Bulk RNA-Seq转录组学习

本文是一篇关于RNA-Seq转录组分析的系列教程,涵盖工作环境准备、读取数据、理解fastq、参考基因组与基因注释、序列比对、reads计数、差异表达分析和富集分析等步骤。介绍了关键工具和概念,如DEXSeq、FastQC、Picard、RSeQC、Salmon、HISAT2、STAR、FPKM和TPM等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

与之对应的是single cell RNA-Seq,后面也会有类似文章。

参考:https://github.com/xuzhougeng/Learn-Bioinformatics/

作业:RNA-seq基础入门传送门

资料:RNA-seq Data Analysis-A Practical Approach(2015)

Bioinformatic Data Skill

biostar handbook

A survey of best practices for RNA-seq data analysis

Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis

Detecting differential usage of exons from RNA-seq data

转录组入门(1): 工作环境准备

miniconda2

cd src
wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
bash Miniconda2-latest-Linux-x86_64.sh
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels bioconda
conda config --set show_channel_urls yes

在里面安装各种工具

conda create -n biostar sra-tools fastqc hisat2 samtools htseq

 

转录组入门(2):读文章拿到测序数据

AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat Commun 2016 Nov 8;7:13347. PMID: 27824034

GSE81916,https://www.ncbi.nlm.nih.gov/geo/

for i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值