bulk-RNA seq测序数据分析流程

本文详细介绍了从bulk-RNA测序数据到差异表达分析的完整流程,包括数据预处理(质量控制、质量修剪、比对到参考基因组)、PCR重复标记、转录组组装与表达估计,以及使用DESeq2进行差异表达分析的步骤和所用工具如FastQC、Trimmomatic、HISAT2、StringTie和DESeq2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假如有bulk-RNA测序的数据:TH1,TH2,TH3三个重复(实验组),TW1,TW2,TW3三个重复(对照组)

  • 准备工作
需要安装的软件(如FastQC、Trimmomatic、HISAT2、StringTie、samtools)
conda install -c bioconda fastqc
conda install trimmomatic
conda install -c bioconda stringtie 
conda install -c bioconda hisat2
conda install samtools
conda install -c bioconda picard

1. 质量控制

首先,需要对原始的测序数据(FASTQ格式)进行质量控制。通常使用FastQC进行初步的质量检查,然后使用Trimmomatic或者其他工具进行质量修剪。

# 质量检查
fastqc *.fq.gz

# 质量修剪
for sample in TH1 TH2 TH3 TW1 TW2 TW3
do
    trimmomatic PE ${sample}.R1.fq.gz ${sample}.R2.fq.gz \
    ${sample}.R1.trim.fq.gz ${sample}.R1.untrim.fq.gz \
    ${sample}.R2.trim.fq.gz ${sample}.R2.untrim.fq.gz \
    SLIDINGWINDOW:4:20 MINLEN:25
done

2.读段比对

使用比对工具(如HISAT2, STAR等)将质量修剪后的读段比对到参考基因组。

  • 使用HISAT2进行读段比对
# 假设参考基因组索引为genome_index
for sample in TH1 TH2 TH3 TW1 TW2 TW3
do
    hisat2 -x genome_index -1 ${sample}.R1.trim.fq.gz -2 ${sample}.R2.trim.fq.gz \
    -S ${sample}.sam
done

  • 使用STAR进行读段比对
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值