xgboost通俗_【通俗易懂】XGBoost从入门到实战,非常详细

本文深入浅出地介绍了XGBoost的核心概念,包括Bagging与Boosting的区别、提升树的构建过程和目标函数优化。通过泰勒级数近似目标函数,讨论如何构建和优化树的结构。此外,文章还提供了实战指导,涉及数据预处理、模型调参策略,并给出了XGBoost在实际问题中的应用示例。
摘要由CSDN通过智能技术生成

f7c25db0f8df310d66b998d6680ec932.png

Paper:XGBoost - A Scalable Tree Boosting System

如果你从来没学习过 XGBoost,或者不了解这个框架的数学原理。这篇 10000 字的文章一定能帮到你,虽然本文有很多公式,但是仔细读下去一定可以读懂。本文从原理到实战,仔细讲解 XGBoost。如果把这篇博文看懂了,再去读原始文章、看 XGBoost 的 PPT 就会比较轻松了。

有人问我要笔记的 PDF 版本,私我即可。

本篇文章纯手码,参考了很多前辈(比如@李文哲)的讲解,会在文末附上链接。如果这篇文章能帮助到你,来个关注,点赞,收藏吧。 如果有披露,还请留言区指出。

XGBoost 是陈天奇等人开源的一个机器学习项目,高效地实现了 GBDT 算法并进行了算法和工程上的许多改进,被广泛应用在 Kaggle 竞赛及其他许多机器学习竞赛中,并取得了不错的成绩。2015 年 29 组优胜方案中 17 组使用了 XGBoost。

Bagging VS Boosting

Bagging:Leverages unstable base learners that are weak because of overfitting

Boosting: Leverage stable base learners that are weak because of underfitting

Bagging 是 Bootstrap Aggregating 的简称,意思就是再取样 (Bootstrap) 然后在每个样本上训练出来的模型取平均,所以是降低模型的 variance. Bagging 比如 Random Forest 这种先天并行的算法都有这个效果。

Boosting 则是迭代算法,每一次迭代都根据上一次迭代的预测结果对样本进行加权,所以随着迭代不断进行,误差会越来越小,所以模型的 bias 会不断降低。比如 Adaptive Boosting,XGBoost 就是 Boosting 算法。

提升树

给了一个预测问题,张三在此数据上训练出了一个模型 - Model 1,但是效果不怎么好,误差比较大。

问题: 如果我们只能接受去使用这个模型但不能改变模型的架构,那接下来需要怎么做?

2d6bfa2e8c4768b891aa769402d7be84.png

如上图所示,将左侧的数据输入到模型1中,会得到预测收入。预测收入和真实的收入之间的差值记做残差。由于这个模型1有一定的能力,但是能力比较弱,遗留了一些问题。这个残差就能表征这个遗留的问题。

1b57a794519858e8bab01a033f1b69b1.png

紧接着,再训练一个模型2去预测这些样本,只不过目标值改为刚刚得到的残差。上图所示,预测的结果不再是收入,而是模型1得到的残差。上图中的模型2还会得到残差,但是我们发现第一行样本的残差已经为零了。也就是说第一个样本,通过模型1和模型2能够预测对收入。但是除了第一行,其他的还是有残差的,这时候可以在这基础上训练一个模型3。

50d40eb8d3e061509b0822ecc1ab6392.png

上图所示,在刚刚 模型2得到的残差(准确的说是模型1和模型2共同作用的结果) 的基础上去拟合,得到模型3。这时候的残差可以理解为是前两个模型遗留下来的问题。该模型去预测模型2的残差,我们发现通过前三个模型的预测,得到的残差是上图中最新的残差这一列。

这时候最新的残差都是非常小了,如果能达到我们满意的标准,我们就可以停下。这样我们就得到了三个不同的模型。如下图所示,最终的预测就是三个模型预测的结果和。

27b2fa6377b149ec1031e83e25b802c9.png

具体问题是如何去构造这些模型呢?如何构建目标函数,如何优化?问题可以按照下面的流程去一步步解决:

如何构造目标函数 -> 目标函数直接优化难,如何近似? -> 如何把树的结构引入到目标函数?-> 仍然难优化,要不要使用贪心算法?

如果看不懂这个流程什么意思,没关系。直接往下读就行了,回过头来看会豁然开朗。

构建目标函数

首先举个例子,用多棵树来预测张三、李四的薪资。如下图所示,用年龄这个因素构建的树预测张三的值为12,用工作年限这个因素构建的树张三为2. 两个相加就是对张三薪资的预测:12+2=14。

e0eb9b22a6f244f4754b52e16ba611b6.png

假设已经训练了

颗树,则对于第
个样本的最终预测值为:

是样本的特征,
是用第
颗树对
样本进行预测。将结果加在一起就得到了最终的预测值
, 而该样本的真实 label 是
。这样我们就能构建损失函数了。

构建的目标函数如下:

b468774dae7c96039855122280e9a788.png

损失函数计算模型预测值和真实值的 loss,其中

是损失函数,可以是 MSE、Cross Entropy 等等。第二项是正则项,来控制模型的复杂度,防止过拟合。这个正则项可以类比 L2 正则。

叠加式的训练

如下图所示,将样本

放入第一棵树后,会得到一个预测值
,将该样本放入到第二颗树中后会得到
。依次类推。

e19b9fb214a7fe2437521a71cf48baa5.png

假设给定样本

其中

是到第 m 课树为止累加的一个预测结果。通过推断,我们可以知道:
,到第
颗树时累加的结果是前
颗树累计的结果和第
颗树输出的结果总和。有了这个推论,我们再看目标函数:

因为最终的预测结果是所有模型(树)累加的结果,所以可以把

写成
(到第 k 课树为止累加的一个预测结果)当训练第
颗树时,最下化下面的损失函数:

相比之下,该式子去掉了

这一项,因为训练第
颗树时,该项为常数项,因为在训练第
颗树的时候,前
颗树的复杂度是已知的,不需要关注前面这些树了。到此为止,我们得出了目标函数:

用泰勒级数近似目标函数

这个目标函数是非常复杂的,我们可以用泰勒级数来近似这个目标函数。

目标函数:

根据泰勒展开式:

紧接着, 我们把

视作
, 把
视作

而根据泰勒展开式可以知道(这里公式可能有点长,但不乱,仔细看就能看懂):

当前目标函数是训练第

颗树时的函数,其中
项是真实值与到第
课树为止累加的预测结果的损失,可以看作是已知的,不参与优化的过程。并且
也可以看成已知的。我们假设上式中
故:

可以将目标函数简化为如下的形式:

当训练第

颗树的时候,{
} 是已知的,
可以看作是训练前
棵树时的残差。由于我们要优化这个目标函数,接下来需要把
参数化。

如何用参数表示一颗树

叶子结点的值用

表示,我们假设 15 这个叶节点用
表示,12 这个叶子结点用
表示,20 这个叶子结点用
表示。
这里的
就是一个参数。

fe0a09c00042e63b318adc63c5f5c2f4.png

接下来的目标是把

参数化。

是什么呢 ?简单来说,
就是第
课树对样本
的预测结果。更具体的,就是把第
个样本规划到第几个叶子结点上了。

这里定义一个函数

:样本
的位置。这里假设第一个叶节点上(即 15 的地方)有样本[1, 3]落在这里 ,第二个节点有样本[4]落在这个地方,样本[2,5]落在了第三个叶子结点处这里 :
  • : 样本
    的位置

用函数

表示了样本落在了那个位置后,就能用参数表示
了。 样本
落在了第
个叶节点上。那么
的预测值就可以用
表示,这样就把
进行了参数化。
是一个参数,下角标
表示落在哪个叶子结点上。但是这里下标还是一个函数,需要定义一下:

即表示哪些样本

落在第
个叶子结点上。举个例子:
表示样本 1,3 落在了第一个节点上。这样进行表示的目的是根据叶节点的位置把样本进行重新的组织。

定义树的复杂度

刚刚把

进行了参数化,接下来的目标是把
参数化。

一颗树的复杂度可以通过叶节点个数和 leaf value 。如下式子,其中

为叶节点的个数,第二项表示 leaf value:

复杂度有两个部分构成的,所以我们可以给每个模块定一个超参数来控制他们:

新的目标函数

经过上面的一步步的简化,我们把最初的目标函数:

简化为了:

紧接着,我们根据刚刚定义的参数:

叶节点的值,
样本
落在哪个叶节点上。
个节点有哪些样本。
的预测值就可以用
表示,可得到:

紧接着,看下图,假设第一个叶节点上(即 15 的地方)有样本[1, 3]落在这里 ,第二个节点有样本[2]落在这个地方,样本[4,5]落在了第三个叶子结点处这里 :

fe0a09c00042e63b318adc63c5f5c2f4.png

所以:

而其中的

又可以表示为(因为样本[4,5]落在了第三个叶子结点处):

因为

。所以我们可以进一步构造新的目标函数:

这个式子中,

是已知的,分别记做
。参数是
。所以是一个关于
二次函数求最优解问题。

知识回顾,典型的二次函数:

最小点的值为:

所以,所以当树的结构固定,也就是说

固定的话,在中括号中的最佳
为:

带入到
中可得,
当前树结构下的最佳的目标函数值:

当我们的知道了训练第

棵树时最小的目标函数值
后,随意给出一颗树(已知树结构),就能算出该棵树下最小的目标函数值。但是可能会有很多颗树,所以我们需要找到目标函数值最小的那颗树。**那么如何去寻找这棵树呢?**把可能所有的树罗列出来是代价很大的,这时候就需要贪心的方法。

如何寻找树的形状?

我们寻找最小的

,原来我们有一颗树,我们是能够计算出这棵树最小的目标函数值的。紧接着
根据特征进行分割落在叶节点的样本,树结构发生改变,这时候新的树的目标函数值也是能够算出来的。所以,使用贪心的方式,选择新的树目标函数值较小的那颗树。

比如下面这个例子,我们有样本

,第一颗树把这些样本分为了两部分,左侧的叶子结点是
,右侧节点是

b352537fa2344bb51460ec3f104cc9f9.png

此时我们知道了树的结构,可以根据如下的公式计算出此时树的最小目标函数值:

紧接着,我们根据新的特征对叶子结点再次进行了分割,得到了如下的树的形状:

d2b3da930ec1781b6d7986fb24ac9348.png

此时,得到了新的

:

紧接着计算两颗树最小目标函数值的差:

最大化的时候,便是
最小的时候。这样我们通过贪心的方式不断构造这棵树,不断扩充这棵树。这里构造树的部分是非常重要的,需要细细品味。如果大概懂了,可以去读原文章哈:XGBoost - A Scalable Tree Boosting System。

实战

实战基于数据集 AllstateClaimsSeverity (Kaggle2016竞赛) :

官网:https://www.kaggle.com/c/allstate-claims-severity/overview

基于给出的数据预测保险赔偿。给出的训练数据是116列(cat1-cat116)的离散数据和14列(con1-con14)的连续数据。

数据分布

导入依赖

import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score as AUC
from sklearn.metrics import mean_absolute_error
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder,LabelBinarizer
from sklearn.model_selection  import cross_val_score

from scipy import stats
import seaborn as sns
from copy import deepcopy

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

加载数据

train = pd.read_csv('allstate-claims-severity/train.csv') 
test = pd.read_csv('allstate-claims-severity/test.csv') 

观察数据,看看数据是啥样的

train.shape # (188318, 132)

输出训练数据,查看数据内容

train

fdad3987d4fa78fa72f300f3e13d4958.png
print('First 20 columns:',list(train.columns[:20]))
print('Last 20 columns:',list(train.columns[-20:]))

First 20 columns: ['id', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cat10', 'cat11', 'cat12', 'cat13', 'cat14', 'cat15', 'cat16', 'cat17', 'cat18', 'cat19']
Last 20 columns: ['cat112', 'cat113', 'cat114', 'cat115', 'cat116', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13', 'cont14', 'loss']

观察得到:一共有 object 类型属性 116 个,float64 属性15个,int64 属性 1 个,其中 id 是int64,loss 赔偿是 float64.

train.describe()

e3265a732300260807733b8bbee30f05.png

可以看到此数据已经被处理,均值基本为 0.5。

查看缺失值

大多情况,我们都需要对数据进行缺失值处理。

pd.isnull(train).values.any()# False 表示没有缺失值

连续值与离散值

train.info()

#类型以及数量:float64(15), int64(1), object(116)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 188318 entries, 0 to 188317
Columns: 132 entries, id to loss
dtypes: float64(15), int64(1), object(116)
memory usage: 189.7+ MB

查看离散特征和连续特征个数

cat_features = list(train.select_dtypes(include=['object']))
print('离散特征Categorical: {} features'.format(len(cat_features)))

离散特征Categorical: 116 features

cont_features = [cont for cont in list(train.select_dtypes(include=['float64','int64'])) if cont not in ['loss','id']]
print('连续特征Continuous: {} features'.format(len(cont_features)))

连续特征Continuous: 14 features

id_col = list(train.select_dtypes(include=['int64']))
print('A column of int64:{}'.format(id_col))

A column of int64:['id']

类别值中属性的个数

#统计类别属性中不同类别的个数
cat_uniques=[]
for cat in cat_features:    
    cat_uniques.append(len(train[cat].unique())) 
uniq_values_in_categories = pd.DataFrame.from_dict([('cat_name',cat_features),('unique_values',cat_uniques)])

uniq_values_in_categories.head()

dde7aadafdf17c025a92543f0d896e3f.png
fig,(ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,5)

ax1.hist(uniq_values_in_categories.unique_values, bins=50)
ax1.set_title('Amount of categorical features with X distinct values')#离散特征值分布情况
ax1.set_xlabel('Distinct values in a feature')
ax1.set_ylabel('F eatures')
ax1.annotate('A  feature  with  326  vals', xy=(322, 2), xytext=(200,  38),arrowprops=dict(facecolor='black'))

ax2.set_xlim(2,30)
ax2.set_title('Zooming in the [0,30] part of left histogram')
ax2.set_xlabel('Distinct values in a feature')
ax2.set_ylabel('F eatures')
ax2.grid(True)
ax2.hist(uniq_values_in_categories[uniq_values_in_categories.unique_values<=30].unique_values, bins=30)
ax2.annotate('Binary features', xy=(3, 71), xytext=(7, 71), arrowprops=dict(facecolor='black'))

fb22004f424f42692085f4847683fd42.png

正如我们所看到的,大部分的分类特征(72/116)是二值的,绝大多数特征(88/116)有四个值,其中有一个具有326个值的特征(一天的数量?)。

赔偿值

plt.figure(figsize=(16,8))
plt.plot(train['id'],train['loss'])
print('train['id']个数:',len(train['id']))
plt.title('Loss values per id')
plt.xlabel('id')
plt.ylabel('loss')
plt.legend()
plt.show()

be0b6df4d1f422aed5706791b377dcac.png

如上图所示,损失值有几个显著的峰值,表示严重事故。这样的数据分布,使得这个功能非常扭曲导致回归表现不佳。

基本上,偏度 度量了实值随机变量的均值分布的不对称性,下面让我们来计算一下loss的偏度:

#scipy.stats 统计指标。
stats.mstats.skew(train['loss']).data
#输出:array(3.79492815)

偏度值比1大,说明数据是倾斜的。不利于数据建模。我们利用对数变换np.log,使倾斜降低。

stats.mstats.skew(np.log(train['loss'])).data
#输出:array(0.0929738)

两种 loss 分布对比:

fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,5)
ax1.hist(train['loss'], bins=50)
ax1.set_title('Train Loss target histogram')
ax1.grid(True)
ax2.hist(np.log(train['loss']), bins=50, color='g')
ax2.set_title("Train Log Loss target histogram")
ax2.grid(True)
plt.show()

425d104d0963669bb35289ba7895446a.png

数据loss对数化之后,是我们喜欢的分布类型。

连续值特征

train[cont_features].hist(bins=50,figsize=(16,12))

8cd216041184b0f2ef98eaddb5c72ef1.png

特征之间的相关性

plt.subplots(figsize=(16,9))
correlation_mat = train[cont_features].corr()
sns.heatmap(correlation_mat,annot=True)

8686c64e853afb205e8d55650a1bf396.png

XGBoost 调参策略

导入依赖

import pandas as pd 
import numpy as np
import xgboost as xgb
import pickle
import sys
import matplotlib.pyplot as plt
from sklearn.metrics import make_scorer
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import LabelEncoder,LabelBinarizer
from sklearn.model_selection  import cross_val_score
from sklearn.model_selection import KFold,train_test_split

from xgboost import XGBRegressor

import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

%config InlineBackend.figure_format = 'retina'

数据预处理

train = pd.read_csv('allstate-claims-severity/train.csv')
train['log_loss']=np.log(train['loss'])

features = [x for x in train.columns if x not in ['id','loss','log_loss']]

cat_features =[x for x in train.select_dtypes(include = ['object']) if x not in ['id','loss','log_loss']]

num_features =[x for x in train.select_dtypes(exclude = ['object']) if x not in ['id','loss','log_loss']]           

print('离散特征Categorical: {} features'.format(len(cat_features)))
print('Numerical:{} features'.format(len(num_features)))
features

离散特征 Categorical: 116 features
Numerical:14 features
['cat1',
 'cat2',
 'cat3',
 'cat4',
 'cat5',
 'cat6',
 'cat7',
 'cat8',
 'cat9',
 'cat10',
 'cat11',
 'cat12',
 'cat13',
 'cat14',
 'cat15',
 'cat16',
 'cat17',
 'cat18',
 'cat19',
 'cat20',
 'cat21',
 'cat22',
 'cat23',
 'cat24',
 'cat25',
 'cat26',
 'cat27',
 'cat28',
 'cat29',
 'cat30',
 'cat31',
 'cat32',
 'cat33',
 'cat34',
 'cat35',
 'cat36',
 'cat37',
 'cat38',
 'cat39',
 'cat40',
 'cat41',
 'cat42',
 'cat43',
 'cat44',
 'cat45',
 'cat46',
 'cat47',
 'cat48',
 'cat49',
 'cat50',
 'cat51',
 'cat52',
 'cat53',
 'cat54',
 'cat55',
 'cat56',
 'cat57',
 'cat58',
 'cat59',
 'cat60',
 'cat61',
 'cat62',
 'cat63',
 'cat64',
 'cat65',
 'cat66',
 'cat67',
 'cat68',
 'cat69',
 'cat70',
 'cat71',
 'cat72',
 'cat73',
 'cat74',
 'cat75',
 'cat76',
 'cat77',
 'cat78',
 'cat79',
 'cat80',
 'cat81',
 'cat82',
 'cat83',
 'cat84',
 'cat85',
 'cat86',
 'cat87',
 'cat88',
 'cat89',
 'cat90',
 'cat91',
 'cat92',
 'cat93',
 'cat94',
 'cat95',
 'cat96',
 'cat97',
 'cat98',
 'cat99',
 'cat100',
 'cat101',
 'cat102',
 'cat103',
 'cat104',
 'cat105',
 'cat106',
 'cat107',
 'cat108',
 'cat109',
 'cat110',
 'cat111',
 'cat112',
 'cat113',
 'cat114',
 'cat115',
 'cat116',
 'cont1',
 'cont2',
 'cont3',
 'cont4',
 'cont5',
 'cont6',
 'cont7',
 'cont8',
 'cont9',
 'cont10',
 'cont11',
 'cont12',
 'cont13',
 'cont14']

ntrain = train.shape[0]
#ntrain = 188318

train_x = train[features]
train_y = train['log_loss']

for c in range(len(cat_features)):
    train_x[cat_features[c]] = train_x[cat_features[c]].astype('category').cat.codes
print('Xtrain:',train_x.shape) # Xtrain: (188318, 130)
print('ytrain:',train_y.shape) # ytrain: (188318,)

train_x

992a92ea8a2886be701125f62164cd98.png

Simple XGBoost Model

首先,我们训练一个基本的xgboost模型,然后进行参数调节通过交叉验证来观察结果的变换,使用平均绝对误差衡量 mean_absolute_error(np.exp(y),np.exp(yhat))。

xgboost 自定义一个数据矩阵类 DMatrix,会在训练开始时,进行一边预处理,从而提高之后每次迭代的效率。

结果衡量方法

#评估策略,e的次幂,用来评估。
#结果衡量方法:使用平均绝对误差来衡量
#mean_absolute_error(np.exp(y), np.exp(yhat))。
#定义计算损失值的函数
def xg_eval_mae(yhat,dtrain):
    y = dtrain.get_label()
    return 'mae',mean_absolute_error(np.exp(y),np.exp(yhat))

Model

#数据类型转换成库可以使用的底层格式。
dtrain = xgb.DMatrix(train_x,train['log_loss'])
dtrain

XGBoost 参数

  • booster : gbtree, 用什么方法进行结点分裂。梯度提升树来进行结点分裂。
  • objective : multi softmax, 使用的损失函数,softmax 是多分类问题
  • num_class : 10, 类别数,与 multi softmax 并用
  • gamma : 损失下降多少才进行分裂
  • max_depth : 12, 构建树的深度, 越大越容易过拟合
  • lambda : 2, 控制模型复杂度的权重值的L2正则化项参数,参数越大。模型越不容易过拟合。
  • subsample : 0.7 , 随机采样训练样本,取70%的数据训练
  • colsample_bytree : 0.7, 生成树时进行的列采样
  • min_child_weight : 3, 孩子节点中最小的样本权重和,如果一个叶子结点的样本权重和小于 min_child_weight 则拆分过程结果
  • slient : 0, 设置成 1 则没有运行信息输出,最好是设置为0
  • eta : 0.007, 如同学习率。前面的树都不变了,新加入一棵树后对结果的影响占比
  • seed : 1000
  • Thread : 7, cup 线程数
xgb_params = {
    'seed': 0,
    'eta': 0.1,
    'colsample_bytree': 0.5,
    'silent': 1,
    'subsample': 0.5,
    'objective': 'reg:linear',
    'max_depth': 5,
    'min_child_weight': 3
}

使用交叉验证 xgb.cv

%%time

#feval:评估策略
bst_cv1 = xgb.cv(xgb_params, dtrain, num_boost_round=50, nfold=3, seed=0, 
                feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)

print ('CV score:', bst_cv1.iloc[-1,:]['test-mae-mean'])

CV score: 1220.110026
Wall time: 26 s

plt.figure()
bst_cv1[['train-mae-mean', 'test-mae-mean']].plot() 

75d800df4e58f030169bf48381831f39.png

上面是我们第一个模型

  • 没有发生过拟合
  • 只建立了50个树模型
%%time
#建立100个树模型
bst_cv2 = xgb.cv(xgb_params, dtrain, num_boost_round=100, 
                nfold=3, seed=0, feval=xg_eval_mae, maximize=False, 
                early_stopping_rounds=10)

print ('CV score:', bst_cv2.iloc[-1,:]['test-mae-mean'])

CV score: 1172.059570333333
Wall time: 50.9 s

fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,4)

ax1.set_title('100 rounds of training')
ax1.set_xlabel('Rounds')
ax1.set_ylabel('Loss')
ax1.grid(True)
ax1.plot(bst_cv2[['train-mae-mean', 'test-mae-mean']])
ax1.legend(['Training Loss', 'Test Loss'])

ax2.set_title('60 last rounds of training')
ax2.set_xlabel('Rounds')
ax2.set_ylabel('Loss')
ax2.grid(True)
ax2.plot(bst_cv2.iloc[40:][['train-mae-mean', 'test-mae-mean']])
ax2.legend(['Training Loss', 'Test Loss']) 

7d5356b2f5ad712b5309a6a1ca278284.png

我们把树模型的数量增加到了100。效果不是很明显。看最后的60次。我们可以看到 测试集仅比训练集高那么一丁点。存在一丁点的过拟合。

不过我们的CV score更低了。接下来,我们改变其他参数。

XGBoost 参数调节

Step 1: 选择一组初始参数 Step 2: 改变 max_depth 和 min_child_weight. Step 3: 调节 gamma 降低模型过拟合风险. Step 4: 调节 subsample 和 colsample_bytree 改变数据采样策略. Step 5: 调节学习率 eta.

class XGBoostRegressor(object):
    def __init__(self, **kwargs):
        self.params = kwargs
        if 'num_boost_round' in self.params:
            self.num_boost_round = self.params['num_boost_round']
        self.params.update({'silent': 1, 'objective': 'reg:linear', 'seed': 0})#默认参数
        
    def fit(self, x_train, y_train):
        '''
        #数据类型转换,#用参数去训练xgboost模型
        '''
        dtrain = xgb.DMatrix(x_train, y_train) 
        self.bst = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
                             feval=xg_eval_mae, maximize=False)
        
    def predict(self, x_pred):
        dpred = xgb.DMatrix(x_pred)
        self.bst = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
                             feval=xg_eval_mae, maximize=False)
        return self.bst.predict(dpred)
    
    def kfold(self, x_train, y_train, nfold=5):
        dtrain = xgb.DMatrix(x_train, y_train)
        cv_rounds = xgb.cv(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
                           nfold=nfold, feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
        return cv_rounds.iloc[-1,:]
    
    def plot_feature_importances(self):
        feat_imp = pd.Series(self.bst.get_fscore()).sort_values(ascending=False)
        feat_imp.plot(title='Feature Importances')
        plt.ylabel('Feature Importance Score')
        
    def get_params(self, deep=True):
        return self.params
 
    def set_params(self, **params):
        self.params.update(params)
        return self 

#衡量标准
def mae_score(y_true, y_pred):
    return mean_absolute_error(np.exp(y_true), np.exp(y_pred))

mae_scorer = make_scorer(mae_score, greater_is_better=False)

bst = XGBoostRegressor(eta=0.1, colsample_bytree=0.5, subsample=0.5, 
                       max_depth=5, min_child_weight=3, num_boost_round=50)

bst.kfold(train_x, train_y, nfold=5)

train-rmse-mean       0.558938
train-rmse-std        0.001005
test-rmse-mean        0.562665
test-rmse-std         0.002445
train-mae-mean     1209.707324
train-mae-std         3.004207
test-mae-mean      1218.884204
test-mae-std          8.982969
Name: 49, dtype: float64

按照训练集处理方式,处理我们的测试集

test = pd.read_csv('allstate-claims-severity/test.csv')

test # 没有loss列,loss需要预测

#features_test = [x for x in test.columns if x not in ['id']]

test_x = test[features]

#将类别数据的类别用数字替换
for c in range(len(cat_features)):

    test_x[cat_features[c]] = test_x[cat_features[c]].astype('category').cat.codes

test_x.head()

a32bf398a7b6307cc818372062856506.png
#数据类型转换成库可以使用的底层格式。
dtest_x = xgb.DMatrix(test_x)
#dtest_x
#得到我们想要的测试集


#预测命令:
#xgb.predict(dtest_x)
test_y = bst.predict(test_x)

test_y[1],len(test_y)

(7.450635, 125546)

import math

#math.exp(test_y[0])
test_exp_y= np.zeros(len(test_y))
for i in range(len(test_y)):
    test_exp_y[i] = math.exp(test_y[i])
test_exp_y.shape

(125546,)

Step 1: 基准模型

Step 2: 树的深度与节点权重

这些参数对xgboost性能影响最大,因此,他们应该调整第一。我们简要地概述它们: max_depth: 树的最大深度。增加这个值会使模型更加复杂,也容易出现过拟合,深度3-10是合理的。 min_child_weight: 正则化参数. 如果树分区中的实例权重小于定义的总和,则停止树构建过程。

xgb_param_grid = {'max_depth': list(range(4,9)), 'min_child_weight': list((1,3,6))}
xgb_param_grid['max_depth'] 

[4, 5, 6, 7, 8]

%%time
from sklearn.model_selection import GridSearchCV

#交叉验证 网格搜索
grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, colsample_bytree=0.5, subsample=0.5),
                param_grid=xgb_param_grid, cv=5, scoring = mae_scorer)

grid.fit(train_x, train_y.values)

Wall time: 18min 30s

GridSearchCV(cv=5, error_score='raise-deprecating',
             estimator=<__main__.XGBoostRegressor object at 0x000001EAF043AAC8>,
             iid='warn', n_jobs=None,
             param_grid={'max_depth': [4, 5, 6, 7, 8],
                         'min_child_weight': [1, 3, 6]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=make_scorer(mae_score, greater_is_better=False),
             verbose=0)

#grid.grid_scores_, grid.best_params_, grid.best_score_  #旧版本

#print(grid.cv_results_)#新版本
print(grid.cv_results_['mean_test_score'])
print(grid.cv_results_['params'])
print('************************************')
print(grid.best_params_)
print('************************************')
print(grid.best_score_ )

[-1243.45883654 -1243.43443586 -1243.74273371 -1219.45710638
 -1219.53921994 -1219.59817312 -1205.01504313 -1203.69057513
 -1203.64737075 -1194.79949665 -1194.31288936 -1193.77942991
 -1189.22162241 -1188.18115104 -1187.53612533]
[{'max_depth': 4, 'min_child_weight': 1}, {'max_depth': 4, 'min_child_weight': 3}, {'max_depth': 4, 'min_child_weight': 6}, {'max_depth': 5, 'min_child_weight': 1}, {'max_depth': 5, 'min_child_weight': 3}, {'max_depth': 5, 'min_child_weight': 6}, {'max_depth': 6, 'min_child_weight': 1}, {'max_depth': 6, 'min_child_weight': 3}, {'max_depth': 6, 'min_child_weight': 6}, {'max_depth': 7, 'min_child_weight': 1}, {'max_depth': 7, 'min_child_weight': 3}, {'max_depth': 7, 'min_child_weight': 6}, {'max_depth': 8, 'min_child_weight': 1}, {'max_depth': 8, 'min_child_weight': 3}, {'max_depth': 8, 'min_child_weight': 6}]
************************************
{'max_depth': 8, 'min_child_weight': 6}
************************************
-1187.5361253348233

网格搜索发现的最佳结果: {'max_depth': 8, 'min_child_weight': 6}, -1187.9597499123447)

def convert_grid_scores(scores):
    _params = []
    _params_mae = []    
    for i in scores:
        _params.append(i[0].values())
        _params_mae.append(i[1])
    params = np.array(_params)
    grid_res = np.column_stack((_params,_params_mae))
    return [grid_res[:,i] for i in range(grid_res.shape[1])] 

_,scores =  convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(5,3)

plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['min_child_weight'], xgb_param_grid['max_depth'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Depth / min_child_weight optimization')
plt.annotate('We use this', xy=(5.95, 7.95), xytext=(4, 7.5), arrowprops=dict(facecolor='white'), color='white')
plt.annotate('Good for depth=7', xy=(5.98, 7.05), 
             xytext=(4, 6.5), arrowprops=dict(facecolor='white'), color='white')
plt.xlabel('min_child_weight')
plt.ylabel('max_depth')
plt.grid(True)
plt.show()

44093937e0a0e2406b89c47c33db9b5e.png

Step 3: 调节 gamma去降低过拟合风险

%%time

xgb_param_grid = {'gamma':[ 0.1 * i for i in range(0,5)]}

grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.5, subsample=0.5),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

#Wall time: 13min 45s

Step 4: 调节样本采样方式 subsample 和 colsample_bytree

%%time

xgb_param_grid = {'subsample':[ 0.1 * i for i in range(6,9)],
                      'colsample_bytree':[ 0.1 * i for i in range(6,9)]}


grid = GridSearchCV(XGBoostRegressor(eta=0.1, gamma=0.2, num_boost_round=50, max_depth=8, min_child_weight=6),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)

# Wall time: 28min 26s

grid.grid_scores_, grid.best_params_, grid.best_score_ 

_, scores =  convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(3,3)

plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['subsample'], xgb_param_grid['colsample_bytree'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Subsampling params tuning')
plt.annotate('Optimum', xy=(0.895, 0.6), xytext=(0.8, 0.695), arrowprops=dict(facecolor='black'))
plt.xlabel('subsample')
plt.ylabel('colsample_bytree')
plt.grid(True)
plt.show() 

25830c40fdda021e39931adbd3f58857.png

在当前的预训练模式的具体案例,我得到了下面的结果: `{'colsample_bytree': 0.8, 'subsample': 0.8}, -1182.9309918891634)

Step 5: 减小学习率并增大树个数

(也可以增大学习率减小树个数)

参数优化的最后一步是降低学习速度,同时增加更多的估计量

First, we plot different learning rates for a simpler model (50 trees):

%%time
    
xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=50, gamma=0.2, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values) 

#CPU times: user 6.69 ms, sys: 0 ns, total: 6.69 ms
#Wall time: 6.55 ms

grid.grid_scores_, grid.best_params_, grid.best_score_ 

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 50 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

41690170bce0e2612fd654b604bfd425.png

{'eta': 0.2}, -1160.9736284869114 是目前最好的结果, 现在我们把树的个数增加到100

xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=100, gamma=0.2, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

grid.grid_scores_, grid.best_params_, grid.best_score_ 

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 100 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

6a9c7181de15d279db34a9370b4083e5.png

学习率低一些的效果更好

我们继续增大树的个数

%%time

xgb_param_grid = {'eta':[0.09,0.08,0.07,0.06,0.05,0.04]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.6, subsample=0.9),
                    param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)

grid.fit(train_x, train_y.values)

grid.grid_scores_, grid.best_params_, grid.best_score_

eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 200 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()

82fe0aee76a0db3d037aaa151c8d5281.png
%%time

# Final XGBoost model

bst = XGBoostRegressor(num_boost_round=200, eta=0.07, gamma=0.2, max_depth=8, min_child_weight=6,
                                        colsample_bytree=0.6, subsample=0.9)
cv = bst.kfold(train_x, train_y, nfold=5)

总结

可以看到200棵树最好的ETA是0.07。正如我们所预料的那样,ETA和num_boost_round依赖关系不是线性的,但是有些关联。

花了相当长的一段时间优化xgboost. 从初始值: 1219.57. 经过调参之后达到 MAE=1171.77. 我们还发现参数之间的关系ETA和num_boost_round:

100 trees, eta=0.1: MAE=1152.247 200 trees, eta=0.07: MAE=1145.92

`XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6, colsample_bytree=0.6, subsample=0.9, eta=0.07).

xgboost作为kaggle和天池等各种数据比赛最受欢迎的算法之一,从项目中可见调参也是一件很容易的事情,并不复杂,好用精确率高,叫谁谁不用。

参考链接

[1] https://www.zhihu.com/question/26760839/answer/33963551

(2) https://www.bilibili.com/video/BV1si4y1G7Jb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值