散度为零的向量的性质

设 $\Omega=\sed{\bbx\in\bbR^3; |\bbx|\leq 1}$. 设 $V:\bbR^3\to\bbR^3$, $V=(V_1,V_2,V_3)$ 是 $C^1$ 向量场, $V$ 在 $\bbR^3\bs \Omega$ 上恒为零, $\dps{\frac{\p V_1}{\p x}+\frac{\p V_2}{\p y}+\frac{\p V_3}{\p z}=0}$ 在 $\bbR^3$ 上恒为零.
(1) 设 $f:\bbR^3\to \bbR$ 是 $C^1$ 函数, 求 $\dps{\iiint_\Omega \n f\cdot V\rd x\rd y\rd z}$.
(2) 求 $\dps{\iiint_\Omega V_1\rd x\rd y\rd z}$.

解答: $$\beex \bea 0&=\iint_{\p\Omega} fV\cdot n \rd S\\ &=\iiint_\Omega \Div(fV)\rd x\rd y\rd z\\ &=\iiint_\Omega \n f\cdot V+f\Div V\rd x\rd y\rd z\\ &=\iiint_\Omega \n f\cdot V\rd x\rd y\rd z. \eea \eeex$$ 特别地, 取 $f(\bbx)=x_1$, 有 $$\bex \iiint_\Omega V_1\rd x\rd y\rd z=0. \eex$$

### 使用KL代替交叉熵作为分类任务的损失函数 在机器学习特别是神经网络训练中,交叉熵和KL都用于衡量两个概率分布间的差异。对于多类分类问题而言,模型通常会输出一个表示各类别预测概率的向量。 当考虑用KL来替换交叉熵作为损失函数时,实际上两者之间存在紧密联系。具体来说,在某些情况下,最小化交叉熵等价于最小化目标真实分布与预测分布之间的KL[^1]。然而,在实际应用过程中直接采用KL计算可能会带来一些挑战: #### 方法实现 为了使用KL替代交叉熵作为损失函数,可以按照如下方式操作: 假设有一个二元或多类别分类器,其最后一层采用了softmax激活函数以获得各个类别的概率估计值p(y|x),其中y代表标签而x则是输入特征;同时设q(y)为目标的真实分布(one-hot编码形式)。那么基于PyTorch框架下的实现方法如下所示: ```python import torch.nn.functional as F def kl_div_loss(input_logits, target_distribution): log_probs = F.log_softmax(input_logits, dim=1) loss = F.kl_div(log_probs, target_distribution, reduction='batchmean') return loss ``` 这段代码定义了一个自定义的KL损失函数`kl_div_loss()`,它接受未经过softmax变换的logits以及真实的分布作为参数,并返回计算得到的平均KL值。 需要注意的是,默认情况下F.kl_div期望接收对数概率而不是原始分数,因此这里先通过`F.log_softmax()`进行了转换处理[^2]。 #### 影响分析 相比于传统的交叉熵损失函数,使用KL可能带来的变化包括但不限于以下几个方面: - **数值稳定性**:由于涉及到取对数运算,如果预测的概率非常接近0,则可能导致较大的梯波动甚至溢出错误。为了避免这种情况发生,可以在计算之前加入一个小常数ε使得所有概率都不小于某个下限。 - **优化难增加**:虽然理论上两种损失函数具有相似性质,但实际上因为数据集特性和初始化等因素的影响,切换到新的损失函数后可能出现收敛速变慢等问题。此时需要调整超参数如学习率等来进行补偿。 - **解释性增强**:从统计学角来看待这个问题的话,KL能够更直观地反映出两组离型随机变量间的信息差距程,有助于理解模型内部机制及其决策过程中的不确定性因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值