FDR错误发现率-P值校正学习[转载]

FDR(False Discovery Rate)是统计学中的一个重要概念,用于控制多假设检验中的错误发现。Benjamini-Hochberg方法是一种计算FDR的常用算法,通过排序p值并逐步计算FDR,以控制错误拒绝率。R语言提供了实现这一方法的工具,例如cummin函数。在多基因表达差异分析等场景中,理解并正确使用FDR对于避免假阳性结果至关重要。
摘要由CSDN通过智能技术生成

转自:https://baike.baidu.com/item/FDR/16312044?fr=aladdin  https://blog.csdn.net/taojiea1014/article/details/79681249

http://www.360doc.com/content/18/0914/21/19913717_786724085.shtml   https://www.sohu.com/a/165109778_785442

https://www.jianshu.com/p/13f46bebebd4

 1.定义

 FDR(false discovery rate),是统计学中常见的一个名词,翻译为伪发现率,其意义为是 错误拒绝(拒绝真的(原)假设)的个数占所有被拒绝的原假设个数的比例的期望值。

//FDR是个期望值

 2.利用Benjamini–Hochberg方法计算FDR的计算及R语言实现

FDR的计算相当简单,包括以下几步:

  1.对p值进行从小到大的排序,标记上序号1~n;

  2.其中,最大的FDR(不考虑重复则为第n位)等于最大的p值;

  3.对于n-1位的FDR,取下面两者的较小值:

  • 上一步(第n位)计算得出的FDR值;

  • p值*n/(n-1)

  4.不断迭代第三步(n-2,n-3....),直至计算到最小p值对应的FDR。

例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值