普式游戏(pervasive game)

    PG是一种今年来兴起的,基于pervasive computering技术的新型游戏。它的主要观点是将现实的环境引入游戏的安排设计中。它打破了传统游戏在时间,地点,游戏行为上的严格限制,游戏者在玩游戏的过程中收到周围环境的影响,并把这些影响因素融入到游戏本身。

 

    这种游戏对环境的依赖性很强,是一种基于周边环境的游戏。由于它的这一特性,让游戏的设计空间变的很大,而不是原来的计算机游戏的概念。为了说明这一游戏概念,我们说一个正在研究的例子---“车载游戏”。这个游戏主要是给做在车后座的儿童定义的,在行车过程中,游戏机通过GPS对游戏者进行定位,分析游戏者现在所处的地方,然后结合其周围的环境定义游戏的进程。比如,当游戏者的车子路过一片森林,游戏就讲述一个关于森林的故事,这样,游戏结合了游戏者所处的森林环境,让游戏者有一个不同的体验。当车子经过一栋大楼,游戏又开始一段现代警匪故事。

 

    在这种游戏中,还有很大的一个因素是非游戏人员的。这一点也和传统游戏有很大的不同。由于非游戏人员行为的参与,游戏的发展和选择都进入了一直无法预知的状况。这个也是IperG(Integrated Project on Pervasive Gaming)的一个研究方向。(欧盟基金的项目,现已结束)。我在这个项目中也做了一个新的游戏,叫做自己讲述的故事(story telling)。其基本概念是基于蓝牙的手机游戏,根据游戏者身边的非游戏者ID和数目,将片段的游戏不断的分发给游戏者,使游戏得以继续。在游戏者成功找到故事的结尾之后,他可以获得自己编写游戏片段的机会。

 

story telling游戏中,游戏的继续是基于游戏者身边的非游戏者和游戏者的数目,曾经接触过的其他游戏者等,增加了游戏的可玩性和不可预测性。

 

来源:http://blog.sciencenet.cn/m/Print.aspx?id=277370

### 广义普氏分析的概念 广义普氏分析是一种用于比较形状的方法,其核心在于通过一系列几何变换(平移、旋转、缩放),使一组数据点尽可能接近另一组数据点。这种方法广泛应用于生物统计学、计算机视觉以及模式识别等领域[^1]。 具体来说,在人脸矫正的应用场景下,广义普氏分析可以用来调整输入图像中的面部特征点位置,使其与预定义的标准平均脸的关键点对齐。这一过程通常涉及最小化两组对应点之间的欧几里得距离平方和,从而实现最佳匹配效果。 ### 广义普氏分析的计算原理 广义普氏分析的核心目标是最小化两个形状间的差异度量函数 \(D\): \[ D(X, Y) = \sum_{i=1}^{n} ||T(x_i) - y_i||^2 \] 其中: - \(X=\{x_1,x_2,...,x_n\}\) 和 \(Y=\{y_1,y_2,...,y_n\}\) 是分别表示源形状和目标形状的一系列坐标点; - \(T(\cdot)\) 表示由平移向量 \(t\)、旋转变换矩阵 \(R\) 及均匀缩放因子 \(s\) 组成的整体转换操作; 最终求解得到最优参数组合使得上述误差达到全局极小值状态。 ```python import numpy as np def generalized_procrustes_analysis(source_points, target_points): """ Perform Generalized Procrustes Analysis to align source points with target points. Parameters: source_points (numpy.ndarray): The set of original shape coordinates. target_points (numpy.ndarray): The reference shape coordinates. Returns: tuple: Transformed source points and transformation parameters. """ # Center both sets around their respective centroids src_centroid = np.mean(source_points, axis=0) tgt_centroid = np.mean(target_points, axis=0) centered_src = source_points - src_centroid centered_tgt = target_points - tgt_centroid # Compute covariance matrix between the two shapes cov_matrix = np.dot(centered_src.T, centered_tgt) U, S, Vt = np.linalg.svd(cov_matrix) R = np.dot(U, Vt).T # Rotation Matrix scale_factor = sum(S)/np.sum(np.square(centered_src)) transformed_points = scale_factor * np.dot(centered_src, R) + tgt_centroid return transformed_points, {'scale': scale_factor, 'rotation': R} source = np.array([[1, 2], [3, 4]]) target = np.array([[2, 3], [4, 5]]) aligned_source, params = generalized_procrustes_analysis(source, target) print(aligned_source) ``` 此代码片段展示了如何利用Python实现基本形式下的广义普氏变换逻辑流程。 ### 应用领域扩展讨论 除了在人脸识别技术当中的运用之外,广义普氏分析还被推广至其他多个学科方向之中。例如,在分子生物学研究方面可用于蛋白质结构对比分析工作当中去发现潜在的功能相似区域或者进化关系线索等问题探讨上具有重要意义价值所在之处[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值