rda冗余分析步骤_数量生态学笔记||冗余分析(RDA)

de1bd2531883?tdsourcetag=s_pcqq_aiomsg

上一节数量生态学笔记||冗余分析(RDA)概述中,我们回顾了RDA的计算过程,不管这个过程我们有没有理解透彻,我希望你能知道的是:RDA是响应变量矩阵与解释变量之间多元多重线性回归的拟合值矩阵的PCA分析。本节我们就是具体来看一个RDA的分析案例,来看看里面的参数以及结果的解读。

# CHAPTER 6 - CANONICAL ORDINATION

# ********************************

# 载入所需程序包

library(ade4)

library(vegan)

library(packfor)# 可在http://r-forge.r-project.org/R/?group_id=195下载,但是好像在R 3.5.1上加载不了,所以这篇我用R3.4来做的。packfor已经不用,函数都搬到adespatial

# 如果是MacOS X系统,packfor程序包内forward.sel函数的运行需要加载

# gfortran程序包。用户必须从"cran.r-project.org"网站内选择"MacOS X",

# 然后选择"tools"安装gfortran程序包。

rm(list = ls())

setwd("D:\\Users\\Administrator\\Desktop\\RStudio\\数量生态学\\DATA")

library(MASS)

library(ellipse)

library(FactoMineR)

# 附加函数

source("evplot.R")

source("hcoplot.R")

# 导入CSV数据文件

spe

env

spa

# 删除没有数据的样方8

spe

env

spa

# 提取环境变量das(离源头距离)以备用

das

# 从环境变量矩阵剔除das变量

env

# 将slope变量(pen)转化为因子(定性)变量

pen2

pen2[env$pen <= quantile(env$pen)[4]] = "steep"

pen2[env$pen <= quantile(env$pen)[3]] = "moderate"

pen2[env$pen <= quantile(env$pen)[2]] = "low"

pen2

table(pen2)

# 生成一个含定性坡度变量的环境变量数据框env2

env2

env2$pen

# 将所有解释变量分为两个解释变量子集

# 地形变量(上下游梯度)子集

envtopo

names(envtopo)

#水体化学属性变量子集

envchem

names(envchem)

# 物种数据Hellinger转化

spe.hel

使用vegan包运行RDA

vegan包运行RDA有两种不同的模式。第一种是简单模式,直接输入用逗号隔开的数据矩阵对象到rda()函数:

math?formula=simpleRDA%20%3D%20rda(Y%2CX%2CW)

式中

math?formula=Y为响应变量矩阵,

math?formula=X为解释变量矩阵,

math?formula=W为偏RDA分析需要的协变量矩阵。

此公式有一个缺点:

math?formula=Y%2CW不能有因子变量(定性变量)。如果有因子变量,建议使用第二种模式:

math?formula=formulaRDA%3C-rda(Y%20%5Csim%20var1%20%2B%20factorA%20%2B%20var2*var3%2BCondition(var4)%2Cdata%3DXWdata%20)

式中,

math?formula=Y为响应变量矩阵。解释变量矩阵包括定量变量(var1)、因子变量(factorA)以及变量2和变量3的交互作用项,协变量(var4)被放到Condition()里。所用的数据都放在XWdata的数据框里。

这个公式与lm()函数以及其他回归函数一样,左边是响应变量,右边是解释变量。

# 基于Hellinger 转化的鱼类数据RDA,解释变量为对象env2包括的环境变量

# 关注省略模式的公式

spe.rda

summary(spe.rda) # 2型标尺(默认)

#这里使用一些默认的选项,即 scale=FALSE(基于协方差矩阵的RDA)和#scaling=2

RDA结果的摘录:

RDA formula :

Call:

rda(formula = spe.hel ~ alt + pen + deb + pH +

dur + pho + nit + amm + oxy + dbo, data = env2)

方差分解(Partitioning of variance):总方差被划分为约束和非约束两部分。约束部分表示响应变量

math?formula=Y矩阵的总方差能被解释变量解释的部分,如果用比例来表示,其值相当于多元回归的

math?formula=R%5E2。在RDA中,这个解释比例值也称作双多元冗余统计。然而,类似多元回归的未校正的

math?formula=R%5E2,RDA的

math?formula=R%5E2是有偏差的,需要进一步校正。

Partitioning of variance:

Inertia Proportion

Total 0.5025 1.0000

Constrained 0.3654 0.7271

Unconstrained 0.1371 0.2729

特征根以及对方差的贡献率(Eigenvalues, and their contribution to the variance ):当前这个RDA分析产生了12个典范轴(特征根用RDA1 至RDA12表示)和16个非约束轴(特征根用PC1至PC16表示)。输出结果不仅包含每轴特征根同时也给出累积方差解释率(约束轴)或承载轴(非约束轴),最终的累计值必定是1.12 个典范轴累积解释率也代表响应变量总方差能够被解释变量解释的部分。

两个特征根的重要区别:典范特征根RDAx是响应变量总方差能够被解释变量解释的部分,而残差特征根RCx响应变量总方差能够被残差轴解释的部分,与RDA无关。

Eigenvalues, and their contribution to the variance

Importance of components:

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8 RDA9 RDA10 RDA11 RDA12 PC1 PC2 PC3

Eigenvalue 0.2281 0.0537 0.03212 0.02321 0.008707 0.007218 0.004862 0.002919 0.002141 0.001160 0.0009134 0.0003406 0.04580 0.02814 0.01529

Proportion Explained 0.4539 0.1069 0.06393 0.04618 0.017328 0.014363 0.009676 0.005809 0.004260 0.002308 0.0018176 0.0006778 0.09115 0.05600 0.03042

Cumulative Proportion 0.4539 0.5607 0.62467 0.67085 0.688176 0.702539 0.712215 0.718025 0.722284 0.724592 0.7264100 0.7270878 0.81824 0.87424 0.90466

PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

Eigenvalue 0.01399 0.009841 0.007676 0.004206 0.003308 0.002761 0.002016 0.001752 0.0009851 0.0005921 0.0004674 0.0002127 0.0001004

Proportion Explained 0.02784 0.019584 0.015276 0.008371 0.006583 0.005495 0.004013 0.003486 0.0019604 0.0011783 0.0009301 0.0004233 0.0001998

Cumulative Proportion 0.93250 0.952084 0.967360 0.975731 0.982314 0.987809 0.991822 0.995308 0.9972684 0.9984468 0.9993768 0.9998002 1.0000000

累积约束特征根(Accumulated constrained eigenvalues)表示在本轴以及前面所有轴的典范轴所能解释的方差占全部解释方差的比例累积。

Accumulated constrained eigenvalues

Importance of components:

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8 RDA9 RDA10 RDA11 RDA12

Eigenvalue 0.2281 0.0537 0.03212 0.02321 0.008707 0.007218 0.004862 0.002919 0.002141 0.001160 0.0009134 0.0003406

Proportion Explained 0.6242 0.1470 0.08792 0.06352 0.023832 0.019755 0.013308 0.007990 0.005859 0.003174 0.0024999 0.0009322

Cumulative Proportion 0.6242 0.7712 0.85913 0.92265 0.946483 0.966237 0.979545 0.987535 0.993394 0.996568 0.9990678 1.0000000

物种得分(Species scores)双序图和三序图内代表响应变量的箭头的顶点坐标。与PCA相同,坐标依赖标尺Scaling的选择。

Scaling 2 for species and site scores

* Species are scaled proportional to eigenvalues

* Sites are unscaled: weighted dispersion equal on all dimensions

* General scaling constant of scores: 1.93676

Species scores

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6

CHA 0.13383 0.11623 -0.238180 0.018611 0.043221 -0.029737

TRU 0.64238 0.06648 0.123713 0.181572 -0.009691 0.029793

VAI 0.47475 0.07015 -0.010218 -0.115369 -0.045317 -0.030033

LOC 0.36260 0.06972 0.041240 -0.190586 -0.046881 0.006448

OMB 0.13079 0.10709 -0.239224 0.043603 0.065881 0.003458

BLA 0.06587 0.12475 -0.216900 -0.004157 0.021793 -0.004195

HOT -0.17417 0.06778 -0.008426 -0.016419 -0.079730 0.044706

TOX -0.12683 0.16052 -0.035733 -0.016087 -0.089768 -0.001880

VAN -0.07963 0.04200 0.007636 -0.059179 -0.033596 -0.121440

CHE -0.10903 -0.17552 -0.090099 -0.168373 0.019444 0.008745

BAR -0.18528 0.21154 -0.073087 -0.006879 -0.012995 0.040484

SPI -0.16064 0.15513 -0.014309 -0.002488 -0.060810 0.011045

GOU -0.20537 0.02484 -0.007973 -0.017742 -0.049137 -0.096231

BRO -0.10734 0.02848 0.090055 0.012324 0.075184 -0.057088

PER -0.09164 0.10506 0.070393 -0.057443 0.013870 -0.009906

BOU -0.20907 0.16002 0.025500 0.012078 -0.011477 0.022035

PSO -0.22799 0.11121 0.018800 -0.009474 -0.027431 0.024517

ROT -0.16098 0.01348 0.041628 0.032398 0.054117 -0.094582

CAR -0.17384 0.14901 0.022262 0.009534 0.004991 -0.005396

TAN -0.14025 0.10632 0.078290 -0.122627 0.054162 0.031256

BCO -0.18594 0.12222 0.053881 0.026170 0.044015 0.014577

PCH -0.14630 0.08894 0.061880 0.034763 0.083530 0.004396

GRE -0.30881 0.01606 0.039366 0.029254 -0.011141 -0.052412

GAR -0.31982 -0.16601 -0.018225 -0.115454 0.054341 0.064772

BBO -0.23897 0.09090 0.051627 0.010224 0.007004 0.036497

ABL -0.43215 -0.22639 -0.108190 0.138807 -0.083920 0.008460

ANG -0.19442 0.14149 0.033659 0.017387 0.008110 0.017638

样方得分(Site scores (weighted sums of species scores))物种得分的加权和:使用响应变量矩阵

math?formula=Y计算获得的样方坐标。

Site scores (weighted sums of species scores)

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6

1 0.40151 -0.154306 0.55539 1.600773 0.191866 0.916893

2 0.53523 -0.025084 0.43389 0.294615 -0.518456 0.458860

3 0.49430 -0.014605 0.49409 0.169038 -0.246166 0.163421

4 0.33452 0.001173 0.51626 -0.321009 0.088716 -0.219837

5 0.02794 -0.194357 0.44612 -0.559210 0.853768 -1.115654

6 0.24422 -0.130778 0.41372 -0.696264 0.181514 -0.273473

7 0.46590 -0.125982 0.31674 -0.137834 -0.548635 -0.061703

9 0.03662 -0.605060 -0.07022 -1.260916 0.669108 1.164986

10 0.31381 -0.198654 0.10764 -0.635139 -0.741448 -0.990236

11 0.48116 -0.039598 -0.37851 0.181924 0.221494 0.254511

12 0.49162 0.014263 -0.37983 0.163103 0.223730 0.324672

13 0.49848 0.212367 -0.67408 0.518823 0.400091 0.221622

14 0.38202 0.229538 -0.75771 0.223651 0.515712 -0.139740

15 0.28739 0.218713 -0.71887 -0.210821 0.176392 -0.553185

16 0.09129 0.400192 -0.34443 -0.376097 -0.366868 -0.575230

17 -0.05306 0.423994 -0.41009 -0.188492 -0.726152 0.151876

18 -0.14185 0.385926 -0.36814 -0.217143 -0.644298 -0.001052

19 -0.28204 0.275528 -0.01877 -0.371457 -0.691725 -0.062230

20 -0.39683 0.209468 0.11547 -0.177972 -0.387121 0.048690

21 -0.42851 0.278256 0.22010 -0.005993 -0.027083 -0.042209

22 -0.46553 0.251819 0.22784 0.040192 0.152965 0.032185

23 -0.28123 -1.145599 -0.50543 0.300015 -0.004403 1.157206

24 -0.40893 -0.75

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值