基于
NVIDIA JetsonTX2
的视频行为检测研究
李龙
;
卿粼波
;
李诗菁
;
何小海
【期刊名称】
《计算机应用与软件》
【年
(
卷
),
期】
2020(037)003
【摘要】
行为检测是计算机视觉领域的一个重要研究方向
,
在交通监控、人机交
互等方面都有着广泛的应用
.
目前
,
基于深度学习的
C3
D
行为检测网络与传统行
为检测相比
,
其检测精度虽然有了提高
,
但存在网络参数量大的问题
.
为进一步提
高检测结果的准确性以及降低网络参数量
,
采用改进的
SqueezeNet
与
C3
D
相
结合的卷积神经网络
,
并引入
BN
层与
short-cut
结构
.
将训练模型部署到
NVIDIA
JetsonTX2
上
,
对视频行为进行分析、检测
.
实验结果表明
,
改进后的
SqueezeNet-C3D
卷积神经网络相比于
C3D
神经网络在精度上提高了
4.4
%
;
改进后的
SqueezeNet-C3D
网络与
SqueezeNet-C3D
网络相比
,
参数量降低了
15
%
.
可见该网络具有精度高、参数量少的优点
.
【总页数】
5
页
(156-159,172)
【关键词】
SqueezeNet;
深度学习
;
计算机视觉
;
NVIDIA;
JetsonTX2;
行为检
测
【作者】
李龙
;
卿粼波
;
李诗菁
;
何小海
【作者单位】
四川大学电子信息学院
四川
成都
610065
【正文语种】
中文
【中图分类】
TP391.41
【相关文献】
1.NVIDIA JetsonTX2
平台:加速发展小型化人工智能终端
[J],
齐健
[1]