lightgbm原始函数与Sklearn

71 篇文章 4 订阅 ¥299.90 ¥399.90
本文介绍了如何使用原生态的LightGBM进行建模,并探讨了添加样本权重训练、模型载入与预测、自定义损失函数等。同时,结合sklearn,通过LightGBM建模并进行sklearn评估,利用网格搜索找到最优超参数,以及通过图形解释模型决策过程。
摘要由CSDN通过智能技术生成

LightGBM

1.原生态的LightGBM

https://github.com/microsoft/LightGBM/blob/master/examples/python-guide/simple_example.py

# coding: utf-8
import json
import lightgbm as lgb
import pandas as pd
from sklearn.metrics import mean_squared_error
import warnings
warnings.filterwarnings
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值