闭环系统的零极点图判定稳定性_自动控制原理课件第3章.ppt

本文介绍了自动控制原理中的闭环系统稳定性,讲解了系统的稳定性定义、闭环传递函数与零极点的关系,以及如何利用劳斯判据判断系统稳定性。通过对MATLAB的运用,探讨了特征方程的零极点图和系统灵敏度在稳定性分析中的作用。
摘要由CSDN通过智能技术生成

《自动控制原理课件第3章.ppt》由会员分享,提供在线免费全文阅读可下载,此文档格式为ppt,更多相关《自动控制原理课件第3章.ppt》文档请在天天文库搜索。

1、第三章 控制系统的稳定性及特性 版本2.0 2011年6月主编修改版 华南理工大学自动化科学与工程学院第三章 控制系统的稳定性及特性3.1 引言3.2 反馈控制系统的结构及其传递函数 3.3 闭环系统的稳定性 3.4 反馈控制系统的特性 3.5 复杂反馈控制系统的基本结构及其特性 3.6 利用MATLAB分析系统的稳定性及特性3.7 小结3.1引言控制系统的结构及其传递函数 闭环系统的稳定性反馈控制系统的特性复杂反馈控制系统的基本结构及其特性利用MATLAB分析系统的稳定性及特性反馈控制系统本章知识体系3.1引言一般来讲,根据应用的需求或者对象本身的特性,被控对象既可以是稳定的也可以是不稳定的。反馈控制系统的典型结构和常用传递函数。如何定义系统的稳定性?如何判定系统的稳定?反馈控制系统的特性如何?有什么优势?3.2 反馈控制系统的结构及其传递函数 典型的反馈控制系统如图3-1所示。3.2.。

2、1 开环传递函数3.2 反馈控制系统的结构及其传递函数 开环控制系统的控制器与反馈控制系统的控制器都串联在控制系统的前向通道中,其区别在于:1)开环控制基于对被控对象进行补偿的原理来实现控制 ,以Gc(s)Gp(s)=1为理想要求。2)反馈控制的原理是基于偏差来产生控制作用。反馈控制系统的控制器也称为串联校正装置,其输入为偏差信号。3)若控制器的输入是系统的偏差信号,则为串联校正装置,若直接为参考输入信号,则为开环控制器。 3.2 反馈控制系统的结构及其传递函数3.2.2 闭环传递函数 3.2 反馈控制系统的结构及其传递函数参考输入和干扰输入同时作用下系统的总输出:两种情况的线性叠加结果为 闭环是实现了负反馈还是正反馈由信号B(s)进入相加点的符号和GL(s)的符号共同决定。闭环系统可能是负反馈系统,也可能为正反馈系统。 3.2 反馈控制系统的结构及其传递函数3.2.3 偏差传递函数 1)。

3、参考输入R(s)作用下的偏差传递函数 2)干扰输入D(s)作用下的偏差传递函数 3)总偏差3.2 反馈控制系统的结构及其传递函数3.2 反馈控制系统的结构及其传递函数闭环传递函数各表达式的公共分母多项式均为:特征多项式方程:若考虑多项式有理分式形式NL和DL和均为首一多项式,即最高阶项系数为1,而Kg称为开环增益。3.3 闭环系统的稳定性 系统能否工作及工作状态如何?1、能够工作:稳定性(稳)2、反应能力:动态特性(快)3、工作效果:稳态特性(准)1.系统稳定性一般概念可表述为 假设某一有界外部干扰输入瞬间作用于一个处于平衡状态的系统,并且导致其偏离平衡状态。若在瞬间干扰消失后,系统最终能够回到原来的平衡状态,则称该系统是稳定的,否则,称该系统是不稳定的。 2.定义3-1(稳定的动态系统定义) 在零初始条件下,若一个闭环系统在有界输入(参考输入或干扰输入)的作用下,其输出响应也有界。3.定。

4、义3-2(数学上严格的有界输入-有界输出稳定性定义)输入:r(t),|r(t)|N (t0)输出:y(t), 3.3 闭环系统的稳定性3.3.1 稳定性的概念和定义3.3 闭环系统的稳定性其中,单实极点个数n1,共轭极点对(n-n1)/2 则要求t时,|g()|趋近于0。从g(t)入手分析系统稳定的充分必要条件与闭环传递函数零极点之间的关系。1、稳定充要条件的推导闭环传递函数的一般形式为:共轭极点对3.3.2 闭环传递函数的极点与系统的稳定性3.3 闭环系统的稳定性情况1:对T(s)的单实数极点-p,情况2:对T(s)的k重极点-p,g(t)的表达式:3.3 闭环系统的稳定性情况3:对于T(s)的共轭复数极点,均为实数3.3 闭环系统的稳定性3.3 闭环系统的稳定性对于Al和Bl为常数情况,两种类型响应与极点位置的对应关系分别如图3-7和图3-8所示。 3.3 闭环系统的稳定性g。

5、(t)存在上界的充分必要条件:即,系统的闭环传递函数极点均具有负实部。 闭环系统稳定性的充分必要条件: 3.3 闭环系统的稳定性如何判定系统的稳定性?直接求解出系统的闭环特征根根据劳斯判据通过特征方程的系数判定根的分布劳斯判据 系统稳定关键看特征根的分布,而根是由方程的系数决定的。劳斯判据是由特征方程的系数来分析系统的稳定性的一种判据。闭环系统的特征方程的一般形式: 3.3.3 劳斯判据及其应用3.3 闭环系统的稳定性1.稳定性的必要条件 各因子相乘展开所得的多项式的系数就是这些正数的乘积组成的,因此也必定为正数,即方程(3-25)的所有系数均为正, al>0。3.3 闭环系统的稳定性2. 劳斯表说明:任意正数乘或除表中某一行不会影响其下面导出行的符号3.3 闭环系统的稳定性3.劳斯判据 特征方程(s)=0具有正实部根的数目与劳斯表第1列中符号变化的次数相同。 4.利用劳斯判据判断。

6、系统的稳定性各项系数是否都大于0;列写劳斯表;若第一列元素出现符号改变, 则系统不稳定; 第一列元素符号改变次数 = 实部为正的闭环极点个数;(1) 稳定的充要条件:a0>03.3 闭环系统的稳定性(2) 稳定的充要条件:ai>0例3-1 3.3 闭环系统的稳定性例3-2:第1列中符号改变了2次,根据劳斯判据该特征方程有2个根在右半s平面,所以系统是不稳定的. 3.3 闭环系统的稳定性例3-3:考虑单位负反馈系统稳定的K的范围 解:闭环系统的特征方程为根据劳斯判据得使系统稳定的充要条件是劳斯表为:3.3 闭环系统的稳定性5. 劳斯表的特殊情况 情况1 劳斯表首列中出现零元素,但其所在行其余各元素不全为零。处理方法:用一个很小的正数ε代替首列中的零元素来参与劳斯表的计算,在构成劳斯表后,再令ε0 进行判定即可。 稳定性判定:劳斯表首列有2次符号变化,所以有2个特征根位于s平面的。

7、右半平面,系统是不稳定的。该特征方程的根为:-1.9571, 0.0686j1.2736和-0.0901j0.5532。 3.3 闭环系统的稳定性情况2 劳斯表首列中出现零元素,且其所在行的其他元素均为零。(1)特征多项式中存在一对根形如(s)(s+)或者(sj)(s+j)的因子;(2)特征多项式中存在两对根形如(s+j)(sj)和(s++j)(s+j)的因子。处理方法:利用全零行的前一行构造一个辅助多项式方程 ,对辅助多项式方程求导,得到多项式的系数代替原来的全零行,继续完成劳斯表。 3.3 闭环系统的稳定性稳定性判定:完成的劳斯表中第1 列元素全部为正,特征方程在s平面的右半平面没有根。但是,上述劳斯表是借助辅助多项式方程完成的,这意味着存在对称于原点的一对特征根或者两对特征根,根据稳定性定义,两类情况均意味着系统是不稳定的。借助计算机可求得该特。

8、征方程的根为:j, j2和 ,系统有2个虚根,临界稳定。3.3 闭环系统的稳定性例3-6 稳定性判定:劳斯表首列有2次符号变化,所以有2个特征根位于s平面的右半平面,系统是不稳定的。注意到劳斯表采用辅助多项式方程才完成,说明存在对称于原点的特征根。事实上,可求得该特征方程的根为:1j2和1j2。 3.3 闭环系统的稳定性6、相对稳定性定义3-3(相对稳定性):设一个n阶闭环系统的特征根为pl(l=1,2,...,n),且对于所有l=1,2,...,n,特征根的实部均满足Re(pl)0使得对于所有l=1, 2, ..., n,有Re(pl)>delta=[1,1,6,5,9,4,4]; %输入多项式>>r=roots(delta); %求(s)=0的根运结果检验:>>rr=-0.0000 + 2.0000i-0.0000 - 2.0000。

9、i-0.5000 + 0.8660i-0.5000 - 0.8660i-0.0000 + 1.0000i-0.0000 - 1.0000i3.6.1 判定系统的稳定性1、解特征方程法:求出特征方程的根。求多项式方程的根可调用的函数roots( ) ;例3-8:可知,系统处于临界响应,故是不稳定的。3.6 利用MATLAB分析系统的稳定性及特性pzmap(num,den) 来绘制系统特征方程的零极点图;通过零极点位置判断系统的稳定性。例3-9 输入以下MATLAB命令>> num=[0 3 2 5 4 6] ;>> den=[1 3 4 2 7 2]; >> pzmap(num, den);>>title('系统的零极点图')计算结果可知,特征根中有两个根的实部为正,所以闭环系统是不稳定的。3.6.2 绘制零极点图判定系统的稳定性 3.6 利用。

10、MATLAB分析系统的稳定性及特性MATLAB没有直接求解灵敏度的调用函数,所以需要根据灵敏度公式来写程序来计算。例3-10先建立一个M文件:sensifcn1.m,然后输入以下MATLAB命令:G=tf([3,18],[1,12,35,24,0]); Gc=tf([5,4],[6,2]);H=tf([0.01,6],[2,4]);S=feedback(1,Gc*G*H);zpk(S)3.6.3 求解灵敏度函数3.7 小结(1)反馈控制系统的典型结构讨论贯穿于全书的反馈控制系统的典型结构,推导其开环传递函数、闭环传递函数以及偏差传递函数,正负反馈的识别;开环控制系统和反馈控制系统的区别:参考输入信号产生控制作用和偏差信号产生控制作用。(2)闭环系统的稳定性和劳斯判据建立系统的有界输入-有界输出稳定性定义。若开环传递函数G(s)的形成过程在Res0内无零极点相消,则有界输入-有界输出稳定性与渐近稳定性、零输入稳定性和内部稳定性是等价的。 劳斯判据,判定实系数多项式方程在平面右半平面是否存在根的充分必要代数判据。由于系统的运动模态决定其瞬态响应,由此得出闭环系统稳定的充分必要条件是要求其特征方程的根均位于平面的左半平面内,故劳斯判据也称为劳斯稳定判据。 3.7 小结(3)反馈控制系统的特性:改进系统的瞬态响应;减小系统的稳态误差;减小内部模型变化的灵敏度提高对外部扰动的抑制能力。(4)复杂反馈控制系统的结构与特性多回路或者多通道的控制系统;两种构成方式:形成局部反馈内回路、添加前馈补偿通道。内环反馈校正、串级控制和前馈-反馈控制三种基本结构。本章结束!。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值