三维green公式_偏微分方程笔记(8)——波动方程的d'Alembert公式, Kirchhoff公式...

这篇博客详细介绍了波动方程的解,包括一维的d'Alembert公式,高维情况下的Euler-Poisson-Darboux方程,以及三维和二维情形下的Kirchhoff和Poisson公式。通过这些公式,博主展示了波动方程解的特性,与Laplace方程和热传导方程的解显著不同。
摘要由CSDN通过智能技术生成

3d41c3a2db98ffc558e6ea2dd5e9f5c7.png

参考文献: L.C. Evans《Partial Differential Equations》2nd Ed, Berkeley.

在2019年9月29日,笔记(7)不见了,是因为“热传导方程”的解的光滑性还是有点没搞懂,等我搞懂了自然就补充了。

在看之前请确保熟悉散度定理(Green公式)等基本内容. 另外这部分涉及的计算非常多,一定要多算!!!!!!!!

下面我们讨论波动方程

和非齐次形式
的解, 其中给定一定的初始和边界条件. 这里
开. 要解的东西是
这里拉普拉斯算子是关于空间变量
的. 另外
给定. 通常我们也记

我们下面会说明波动方程的解和Laplace方程以及热传导方程的解的性质非常不一样, 比如波动方程的解通常不是

光滑的等等.

目录

  1. 一维情形下的解、d'Alembert公式
  2. d'Alembert公式与对称延拓
  3. Euler-Poisson-Darboux方程
  4. 三维情形下的解、Kirchhoff公式
  5. 二维情形下的解、Poisson公式

1 d'Alembert公式的导出

和解Laplace方程、热传导方程找不变量不同, 下面我们提供一个非常优雅的解决方式来解高维情形. 先考虑一维情形, 然后再看高维. 下面考虑

这里

给定. 我们要用
来表示u.

注意到我们可以对波动方程作一个“分解”, 写

这是个常系数的输运方程(回顾笔记(1)), 套用相关公式可得
这里
代回v的定义式可得

这是非齐次输运方程, 记

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值