edger多组差异性分析_edgeR之配对检验分析差异基因的使用教程

本文详细介绍了如何使用R包edgeR进行RNA-seq数据的差异表达分析,包括数据归一化、构建DGElist对象、过滤、标准化、离散度估计和差异基因检验等步骤,重点强调了在分析circRNA时的特殊处理和注意事项。
摘要由CSDN通过智能技术生成

edgeR的介绍

背景

RNA-seq表达谱与生物复制的差异表达分析。 实现一系列基于负二项分布的统计方法,包括经验贝叶斯估计,精确检验,广义线性模型和准似然检验。 与RNA-seq一样,它可用于产生计数的其他类型基因组数据的差异信号分析,包括ChIP-seq,Bisulfite-seq,SAGE和CAGE。

简介

edgeR包是进行RNA-seq数据分析非常常用的一个R包。该包需要输入每个基因关于每个样本的reads数的数据,每行对应一个基因,每一列对应一个样本。edgeR作用的是真实的比对统计,因此不建议用预测的转录本。

归一化原因:

技术原因影响差异表达分析:

1)Sequencing depth:统计测序深度(即代表的是library size);

2)RNA composition:个别异常高表达基因导致其它基因采样不足

3)GC content: sample-specific effects for GC-content can be detected

4)sample-specific effects for gene length have been detected

注意:edgeR必须是原始表达量,而不能是rpkm等矫正过的。

1.读取表达矩阵文件

>SFTSV_24vscontrol_circ

2.构建分组变量

分为control组和SFTSV_24组,每组都为三个重复

>group

3.构建DGElist对象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值