大型语言模型(LLMs)在机器翻译、代码生成等领域展现出惊人的能力。为了优化其性能,调整超参数至关重要。其中一个关键超参数是温度参数(T),它控制着下一个词的概率分布。温度参数的调整会显著影响模型生成的文本质量。
低温下,模型生成的句子缺乏多样性,并出现明显的重复结构。而高温下,生成的句子则往往杂乱无章,难以理解。 这种现象让人不禁思考,温度参数的变化是否仅仅是量变,还是存在着本质上的质变?
借鉴物理学的相变理论
为了回答这个问题,我们可以借鉴物理学中的相变理论。相变是指物质在特定条件下发生的物理性质的突变。例如,水在 0°C 时会发生从液态到固态的相变。相变通常伴随着一些奇异现象,例如,在临界温度下,物质的某些物理量会发生发散。
类似地,我们可以将大型语言模型看作一个复杂的系统,温度参数则相当于系统的控制参数。 当温度参数变化时,模型生成的文本结构也会发生变化。那么,是否存在一个临界温度,将模型的输出文本划分为不同的相?
GPT-2 模型的实验结果
为了验证这一猜想,研究人员利用 GPT-2 模型进行了大量的数值实验。他们分析了 GPT-2 模型在不同温度参数下生成的文本的统计特性,特别是词性标注序列 (POS sequences) 的统计特性。
实验结果表明,在临界温度 (Tc ≈ 1) 附近,模型生成的文本表现出明显的临界现象。 具体而言,在临界温度附近,文本中的词性标注序列的关联性呈现出幂律衰减&#x