在人工智能领域,大语言模型(Large Language Models, LLMs)的发展可谓日新月异。随着各大科技公司和研究机构纷纷推出自己的大模型,一个常被忽视却至关重要的问题浮出水面:这些模型到底有多快?
本文将为您揭秘各大模型的真实速度,带您一探究竟谁才是AI界的"快枪手"。
为什么速度很重要?
在讨论模型性能时,我们往往关注其智能程度、回答质量等方面。然而,速度作为一个核心指标,同样不容忽视。原因有以下几点:
- 用户体验:更快的响应速度意味着更流畅的交互体验。
- 成本效益:高速模型能在相同时间内处理更多请求,提高资源利用率。
- 实时应用:某些场景(如实时翻译)对速度有极高要求。
- 开发效率:更快的模型可以加速开发和测试过程。
因此,了解各个模型的真实速度对于开发者和用户来说都至关重要。
测试方法
为了公平比较各模型的速度,我们采用了以下测试方法:
- 任务设置:要求各模型将《出师表》中的一段古文翻译成现代汉语。
- 接口调用:通过API方式访问各模型。
- 计算公式:生成速度 = 生成长度 / 生成时间
- 生成长度:通过completions接口获取
- 生成时间 = 总时间(接收请求的时间-发出的时间) - 网络延迟 - 理解上文的时间
为了更精确地测量,每个模型都进行了两次调用:
- 第一次:使用streaming方式,获取首个toke