在当今复杂多变的世界中,自主系统(AS)正在各个领域发挥着越来越重要的作用。这些系统能够自主地适应环境变化,不断优化自身性能,为人类社会带来巨大便利。然而,如何在多个目标之间找到平衡,实现真正的多目标优化,一直是自主系统面临的重大挑战。近日,都柏林圣三一学院的研究人员在这一领域取得了重要突破,他们首次将深度W学习(Deep W-Learning,DWN)这一多目标深度强化学习算法应用于实际的自主系统中,为解决这一难题开辟了新的途径。
自主系统优化的难题
自主系统通常需要在多个相互冲突的目标之间寻求平衡。例如,一个自适应web服务器需要同时考虑响应时间和资源成本;一个自动驾驶系统则需要权衡安全性、舒适度和效率等多个指标。传统的做法往往是将多个目标通过预定义的权重组合成一个单一的目标函数,然后采用强化学习等方法进行优化。
然而,这种方法存在明显的局限性。首先,预先定义权重难以应对动态变化的环境和需求。其次,多个目标之间的权衡关系往往非常复杂,难以用简单的线性组合来表达。此外,单一目标函数也无法充分利用多目标优化的潜力,难以找到真正的最优解。
深度W学习:多目标优化的新方法
为了克服这些局限,研究人员提出了深度W学习(DWN)这一创新方法。DWN是对传统W学习的扩展,结合了深度神经网络的强大表达能力。其核心思想是为每个优化目标单独训练一个深度Q网络(DQN),然后通过W学习机制来协调这些网络的决策。
具体来说,DWN包含以下关键组件:
-
多个DQN:每个DQN负责优化一个特定目标,如响应时间或成本。
-
W网络:用于学习不同目标之间的权衡关系,决定