引言
在当今数字化时代,大语言模型(LLMs)正成为企业和个人工作流程中不可或缺的一部分。无论是自动化客服、文本摘要还是创意写作,LLMs都展现了其强大的能力。然而,要充分发挥这些模型的潜力,设计有效的提示(prompts)显得尤为重要。提示不仅需要清晰地定义任务和期望结果,还要传达细微的偏好和输出要求。尽管如此,提示工程(prompt engineering)通常是一个繁琐且耗时的过程,尤其是对于缺乏相关经验的用户而言。
为了解决这一问题,Liat Ein-Dor等人提出了一种名为“对话式提示工程”(Conversational Prompt Engineering,CPE)的新方法。这一工具旨在通过友好的对话界面,帮助用户为特定任务创建个性化的提示,从而简化提示工程的过程。
CPE的核心理念
CPE的设计基于三个核心观点。首先,用户常常难以清楚地定义他们的任务和期望。先进的聊天模型可以帮助用户更好地理解和表达他们的具体需求,使得沟通变得更加高效。其次,给定一项任务,未标记的输入文本可以被LLMs用来建议数据特定的输出偏好维度。这一过程可以进一步帮助用户明确任务要求,突出数据的相关方面。最后,用户对特定模型生成输出的反馈不仅可以用于改善输出本身,还可以用于优化应用于未见文本