【prompt 工程】:System Prompt 和 User Prompt 在功能和目的的区别

问题:

system prompt会和user prompt有不一样的功能吗?

解决:

是的,System PromptUser Prompt 在功能和目的上是不同的:

1. System Prompt

  • 作用:设置对话的基础规则、语境和行为模式,定义 AI 的角色、语调和限制。
  • 谁提供:通常由开发者或应用系统提供,用户看不到。
  • 使用场景
    • 指定模型的个性化行为(例如作为助手、讲师、翻译等)。
    • 定义回答风格(简洁、专业、有趣等)。
    • 限制或指导模型在某些上下文中如何回应。
  • 示例
    • “你是一个专业的科学顾问,用精确的术语回答问题。”
    • “永远不要提供医学建议,只能提供一般性信息。”

2. User Prompt

  • 作用:向模型提问或提供上下文信息,引导模型生成具体的回答。
  • 谁提供:由最终用户(如你)输入。
  • 使用场景
    • 提出问题、要求解释或生成内容。
    • 提供特定信息供模型参考。
  • 示例
    • “帮我总结这篇文章的重点。”
    • “解释光合作用的过程,用简单语言描述。”

主要差异

属性System PromptUser Prompt
目标定义规则和角色提供问题或任务内容
来源开发者或应用程序设置最终用户直接输入
作用范围影响整个对话仅对特定输入有影响
可见性通常对用户不可见用户可以直接看到并编辑

配合使用

System Prompt 和 User Prompt 通常会结合起来使用。系统提示提供模型的基础行为规范,而用户提示则用于具体的交互场景。这种设计可以确保模型既能保持一致性,又能灵活应对用户需求。

### 智能搜索助手的工作原理 智能搜索助手指的是能够通过网络技术辅助用户从大量数据中高效获取所需信息的服务工具[^1]。这类系统不仅限于简单的关键词匹配,而是借助先进的算法技术来提升用户体验。 #### 提示词的作用及其重要性 提示词作为Agent接收的第一个输入信号,对于启动整个查询过程至关重要[^3]。它可以表现为多种形式——文字、图片或是声音片段等,并且承载着待解决问题的具体描述或者是目标指令的信息。当智能搜索助手接收到这样的提示之后,会立即对其进行分析解读,从而决定下一步该如何操作以满足用户的请求。 #### 工作流程概述 一旦获得了有效的提示词,智能搜索助手便会进入如下几个阶段: - **解析与理解**:对提示的内容进行全面的理解,这可能涉及自然语言处理(NLP),意图识别以及其他相关的人工智能技术。 - **资源检索**:依据解析后的结果,在内部存储的数据集或者外部互联网上查找最贴合需求的答案或资料。 - **响应构建**:整理所获得的信息并按照易于理解使用的格式呈现给最终使用者;如果必要的话还会给出进一步探索的方向建议。 ```python def process_query(prompt): """ 处理来自用户的查询提示 参数: prompt (str): 用户提供的提示词字符串 返回: response (dict): 包含答案其他相关信息的字典对象 """ # 解析理解提示词 parsed_prompt = parse_and_understand(prompt) # 执行搜索逻辑 search_results = perform_search(parsed_prompt) # 构建回复消息体 response = build_response(search_results) return response ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值