N2D2 是一个开源 CAD 框架,用于深度神经网络模拟和完全基于 DNN 的应用程序构建。
源代码
https://github.com/CEA-LIST/N2D2
N2D2(神经网络设计和部署)是CEA LIST的 CAD 框架,用于设计和模拟深度神经网络 (DNN),并在嵌入式平台上构建完整的基于 DNN 的应用程序。N2D2 是与工业和学术合作伙伴一起开发的,并且是开源的。
N2D2 作为一个开源CAD(计算机辅助设计)框架,专注于深度神经网络(DNN)的模拟以及完全基于DNN的应用程序的构建,它 提供了一系列工具和组件来帮助开发者在设计、训练、优化和部署神经网络模型到各种设备上时更加高效和灵活。
通常,一个CAD框架会包含图形界面、算法库、模拟工具等,但N2D2似乎更专注于DNN的生命周期管理,从设计到部署。这意味着它可能提供了以下功能:
-
神经网络设计:提供了构建神经网络模型所需的各种层、激活函数、优化器等组件,使得开发者能够轻松地设计和实验不同的网络结构。
-
模拟和测试:在将模型部署到实际硬件之前,N2D2可能提供了模拟环境来测试网络性能、准确率和资源消耗等关键指标。
-
优化:针对不同的硬件平台(如CPU、GPU、FPGA、ASIC等),N2D2可能提供了优化工具和技术,如量化、剪枝、压缩等,以减少模型大小、提高推理速度并降低功耗。
-
部署&