目录
(一)简介
图片可以用于传达某些情感,例如看到流浪狗的照片会让你感到悲伤,而看到美景的时候会让你心旷神怡。对图片所传达的情感进行识别分析是一个具有吸引力的问题。目前已经有很多的方法在研究这个课题,本博客主要对自己所看过的相关论文做一个总结分享。
1. 情绪模型
心理学中主要有两种情感表达模型:
- CES (Categorical Emotion States): 类别情绪状态。这种模型主要讲情绪设置为一组预先定义好的种类,例如:伤心,开心,激动等。这种模型所对应的方法将图片情感分析视为一个分类问题。
- DES(Dimensional Emotion Space): 维度情绪模型。其中常用的有 valence-arousal-dominance (VAD) and activity-temperature-weight (VTT) 模型,其中 VAD 模型常用一些。我们可以将其视为颜色中的三种基本颜色,通过不同数值的组合得到一个颜色。VAD 中 valence、arousa l和 dominance 三个维度给一个值就代表一种情感。这种模型所对应的方法将图片情感分析视为一个回归问题。
目前大部分的论文都是使用 CES 模型的,因为这个模型直观简单,但是理论上来说 CES 的情感表达能力不如 DES,比如特别伤心和有点伤心都属于伤心一类,但是在 DES 中各个维度的值就会不同。但是两者之间是有一定联系的。比如下图中的 © 子图,如果按照 CES 就是 fear 一类,如果按照 DES 三个维度对应的值就是 4.1956、4.49989 和 4.8378。
2. 常用数据集
- IASP (International Affective Picture System)
- IASPa
- Abstract
- GAPED (Geneva Affective Picture Database)
- MART
- devArt
- Tweet
- FlickrCC (Flickr creative common)
- Flickr
- Emotion6
- FI (Flicker and Instagram)
- Emotion6
- IESN
- FlickrLDL
- TwitterLDL
3. 问题难点(挑战)
3.1 数据标记困难
标记图片的情感是一件很困难的事情,一是构造大型数据集(深度学习通常需要大量数据)通常需要大量的人力,另外有一个很关键的问题就是情绪这个问题是很主观的:同一张图片不同人可能从中获得的情感是不同的,同一个人在不同时期对同一张图片产生的情感也可能是不同的。因此标注一个大型数据集很麻烦,导致现有的大型数据集很少。解决上述问题的方法之一就是一张图片多个人标注