Norms for Vectors and Matrices

矩阵和向量的范式(Norms for Vectors and Matrices)

1 内积和范式的定义(Definitions of norms and inner product)

向量范式的定义(vector norm)

定义 1.1. V V V 是定义在场 F \mathbf{F} F( F = R \mathbf{F} = \mathbf{R} F=R 或者 C \mathbf{C} C,即实数域或者是复数域)上的向量空间。 如果对于任意的 x , y ∈ V x, y \in V x,yV c ∈ F c\in \mathbf{F} cF都满足下面几个条件,则称函数 ∥ ⋅ ∥ : V → R \|\cdot\|:V\to \mathbf{R} :VR 是一个范式 (有时被称为向量范式vector norm)。
(1) ∥ x ∥ ≥ 0   Nonnegativity(非负) (1a) ∥ x ∥ = 0  if and only if  x = 0 Positivity(永正) (2) ∥ c x ∥ = ∣ c ∣ ∥ x ∥ Homogeneity(同质) (3) ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ Triangle Inequality(三角不等) \begin{aligned} &\text{(1)} \quad \|x\| \ge 0\ \qquad &\text{Nonnegativity(非负)}\\ &\text{(1a)} \quad \|x\| = 0 \text{ if and only if }x=0 \qquad &\text{Positivity(永正)}\\ &\text{(2)} \quad \| cx \| = |c| \|x\| \qquad &\text{Homogeneity(同质)} \\ &\text{(3)} \quad \| x+y \| \le \|x\| + \|y\| \qquad &\text{Triangle Inequality(三角不等)} \\ \end{aligned} (1)x0 (1a)x=0 if and only if x=0(2)cx=cx(3)x+yx+yNonnegativity(非负)Positivity(永正)Homogeneity(同质)Triangle Inequality(三角不等)

Positivity(1a)和Homogeneity(2)保证了对于任意非零向量 x x x,可以正则化到单位向量 u = x ∥ x ∥ u=\frac{x}{\|x\|} u=xx

只满足(1),(2),(3)而不满足(1a)的范式称为半范式(seminorm),(1a)保证了只有零向量的范式才是0,非零向量的范式都大于0,而一个非零向量的半范式可以是0。

引理 1.2. ∥ ⋅ ∥ \|\cdot\| 是定义在实数域或者复数域向量空间 V V V 上的半范式, 则对于任意 x , y ∈ V x, y\in V x,yV,有 $ | |x| − |y|| \le |x − y|$

Proof. 也就是证明 ± ( ∥ x ∥ − ∥ y ∥ ) ≤ ∥ x − y ∥ \pm (\|x\| − \|y\|) \le \|x − y\| ±(xy)xy
∥ x ∥ = ∥ x − y + y ∥ ≤ ∥ x − y ∥ + ∥ y ∥ ⇒ ∥ x − y ∥ ≥ ∥ x ∥ − ∥ y ∥ ∥ y ∥ = ∥ y − x + x ∥ ≤ ∥ y − x ∥ + ∥ x ∥ = ∥ x − y ∥ + ∥ x ∥ ⇒ ∥ x − y ∥ ≥ ∥ y ∥ − ∥ x ∥ \|x\| =\|x-y+y\| \le \|x-y\|+\|y\| \\ \Rightarrow \|x-y\| \ge \|x\| - \|y\| \\ \|y\| =\|y-x+x\| \le \|y-x\|+\|x\| = \|x-y\|+\|x\|\\ \Rightarrow \|x-y\| \ge \|y\| - \|x\| \\ x=xy+yxy+yxyxyy=yx+xyx+x=xy+xxyyx

内积定义(inner product)

定义 1.3. V V V 是定义在场 F \mathbf{F} F( F = R \mathbf{F} = \mathbf{R} F=R or C \mathbf{C} C)上的向量空间。 如果对于任意 x , y , z ∈ V x, y, z \in V x,y,zV c ∈ F c\in \mathbf{F} cF,函数 < ⋅ , ⋅ > : V × V → F \left< \cdot ,\cdot \right>:V\times V\to \mathbf{F} ,:V×VF 满足下列条件,则它是一个内积(inner product)
$$
\begin{aligned}
&\text{(1)} \left< x,x \right> \ge 0\ \qquad &\text{Nonnegativity(非负)}\
&\text{(1a)} \left< x,x \right> = 0 \text{ if and only if }x=0 \qquad &\text{Positivity(永正)}\
&\text{(2)} \left< x+y,z \right> = \left< x,z \right>+\left< y,z \right> \qquad &\text{Additivity(加法)} \
&\text{(3)} \left< cx,y \right> = c\left< x,y \right> \qquad &\text{Homogeneity(同质)} \
&\text{(4)} \left< x,y \right> = \overline{\left< y,x \right>} \qquad &\text{Hermitian Property(共轭对称性)} \

\end{aligned}
$$
只满足(1), (2), (3), (4)而不满足(1a)的称为semi-inner product。

柯西施瓦茨不等式

定理 1.4(Cauchy-Shwarz inequality). < ⋅ , ⋅ > \left< \cdot ,\cdot \right> ,是定义在向量空间 V V V 上的内积,则对于任意 x , y ∈ V x,y\in V x,yV
∣ < x , y > ∣ 2 ≤ < x , x > < y , y > {\left |\left< x ,y \right> \right|}^2 \le \left< x ,x \right>\left< y ,y \right> \quad x,y2x,xy,y
当且仅当(if and only if) x 和 y 线性相关(linearly dependent),不等式取等号。

标量形式表示为 ( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) (\sum_{i=1}^{n}x_iy_i)^2 \le (\sum_{i=1}^{n}x_i^2 )(\sum_{i=1}^{n}y_i^2) (i=1nxiyi)2(i=1nxi2)(i=1nyi2)

Proof. x , y ∈ V x,y\in V x,yV,若 x = y = 0 x=y=0 x=y=0,则不等式显然成立,所以假设其中一个是非零向量,不失一般性,假设 y ≠ 0 y\ne 0 y=0,令 v = < y , y > x − < x , y > y v=\left< y ,y \right>x - \left< x ,y \right>y v=y,yxx,yy,有:
0 ≤ < v , v > = < < y , y > x − < x , y > y , < y , y > x − < x , y > y > = < y , y > 2 < x , x > − < y , y > < x , y > ‾ < x , y > − < x , y > < y , x > < y , y > + < y , y > < x , y > ‾ < x , y > = < y , y > 2 < x , x > − < y , y > ∣ < x , y > ∣ 2 = < y , y > ( < x , x > < y , y > − ∣ < x , y > ∣ 2 ) 0\le \left< v,v \right>=\left< \left< y ,y \right>x - \left< x ,y \right>y ,\left< y ,y \right>x - \left< x ,y \right>y \right> \\ =\left< y ,y \right>^2 \left< x,x \right> -\left< y,y \right>\overline{ \left< x,y \right>}\left< x,y \right>-\left< x,y \right>\left< y,x \right> \left< y,y \right> + \left< y,y \right>\overline{ \left< x,y \right>}\left< x,y \right> \\ =\left< y ,y \right>^2\left< x,x \right> - \left< y ,y \right> {\left |\left< x,y \right> \right|}^2 \\ =\left< y ,y \right>(\left< x,x \right>\left< y ,y \right>-{\left |\left< x,y \right> \right|}^2) 0v,v=y,yxx,yy,y,yxx,yy=y,y2x,xy,yx,yx,yx,yy,xy,y+y,yx,yx,y=y,y2x,xy,yx,y2=y,y(x,xy,yx,y2)
因为 y ≠ 0 y\ne 0 y=0,即 < y , y > > 0 \left< y ,y \right> > 0 y,y>0,则推出 < x , x > < y , y > − ∣ < x , y > ∣ 2 ≥ 0 \left< x,x \right>\left< y ,y \right>-{\left |\left< x,y \right> \right|}^2 \ge 0 x,xy,yx,y20,只有当 v = 0 v=0 v=0的时候,等式成立,即 v = < y , y > x − < x , y > y = 0 v=\left< y ,y \right>x - \left< x ,y \right>y=0 v=y,yxx,yy=0,也就是说 x x x y y y线性依赖。

推论 1.5. 如果 < ⋅ , ⋅ > \left< \cdot ,\cdot \right> , 是定义在实数或者复数域向量空间 V V V 上的内积,则函数 ∥ ⋅ ∥ : V → [ 0 , ∞ ) \|\cdot\|:V\to [0,\infty) :V[0,) ∥ x ∥ = < x , x > 1 / 2 \|x\|= \left< x,x \right>^{1/2} x=x,x1/2 是向量空间 V V V 上的一个范式。这样的范式(norm)被称为从内积获得(derived from an inner product)。


2 向量的范式

l 1 -morm l_1\text{-morm} l1-morm

C n \mathbf{C}^n Cn上的和范式(sum norm),也叫l1-范式(l1-norm),定义如下:
∥ x ∥ 1 = ∣ x 1 ∣ + ⋯ + ∣ x n ∣ \|x\|_1=|x_1|+\cdots+|x_n| x1=x1++xn
通常也被称为曼哈顿范式(Manhattan norm)。

l 2 -morm l_2\text{-morm} l2-morm

一个向量 x = [ x 1 , . . . , x n ] T ∈ C n x=[x_1,...,x_n]^T\in \mathbf{C}^n x=[x1,...,xn]TCn的欧几里得范式(Euclidean norm),也叫l2范式(l2-norm),定义如下:
∥ x ∥ 2 = ( ∣ x 1 ∣ 2 + ⋯ + ∣ x n ∣ 2 ) 1 / 2 \|x\|_2=(|x_1|^2+\cdots+|x_n|^2)^{1/2} x2=(x12++xn2)1/2
经常使用 ∥ x − y ∥ 2 \|x-y\|_2 xy2来衡量两个点 x , y ∈ C n x,y\in \mathbf{C}^n x,yCn的欧几里得距离(Euclidean distance)。

l ∞ -morm l_\infty\text{-morm} l-morm

C n \mathbf{C}^n Cn上的max norm( l ∞ l_\infty l-norm)为:
∥ x ∥ ∞ = max ⁡ { ∣ x 1 ∣ , ⋯   , ∣ x n ∣ } \|x\|_\infty= \max \{|x_1|,\cdots,|x_n| \} x=max{x1,,xn}
一般的, C n \mathbf{C}^n Cn上的 l p l_p lp-norm定义为:
∥ x ∥ p = ( ∣ x 1 ∣ p + ⋯ + ∣ x n ∣ p ) 1 / p , p ≥ 1 \|x\|_p=(|x_1|^p+\cdots+|x_n|^p)^{1/p},\quad p\ge 1 xp=(x1p++xnp)1/p,p1

以二维向量 v = ( v 1 , v 2 ) \mathbf{v}=(v_1, v_2) v=(v1,v2)举例,范式的值恰好为1的图像如下,其中横轴代表 v 1 v_1 v1,纵轴代表 v 2 v_2 v2

l1范式,即 ∥ v ∥ 1 = ∣ v 1 ∣ + ∣ v 2 ∣ = 1 \|v\|_1=|v_1|+|v_2|=1 v1=v1+v2=1

2-1

l2范式,即 ∥ v ∥ 2 = ∣ v 1 ∣ 2 + ∣ v 2 ∣ 2 = 1 \|v\|_2=\sqrt{|v_1|^2+|v_2|^2}=1 v2=v12+v22 =1

2-2

Infinity范式,即 ∥ v ∥ ∞ = max ⁡ { ∣ v 1 ∣ , ∣ v 2 ∣ } = 1 \|v\|_\infty= \max \{|v_1|,|v_2| \}=1 v=max{v1,v2}=1

2-3

C n \mathbf{C}^n Cn上的k-norms,融合max norm和sum norm,即选k个最大的:
∥ x ∥ [ k ] = ∣ x i 1 ∣ , ⋯   , ∣ x i k ∣ , in which  ∣ x i 1 ∣ ≥ ⋯ ≥ ∣ x i k ∣ \|x\|_{[k]}= |x_{i_1}|,\cdots,|x_{i_k}| ,\text{in which }|x_{i_1}|\ge \cdots \ge |x_{i_k}| x[k]=xi1,,xik,in which xi1xik

Let S ∈ M m , n S\in M_{m,n} SMm,n have full column rank, so m ≥ n m\ge n mn .Let ∥ ⋅ ∥ \|\cdot\| be a given norm on C m C^m Cm and define
∥ x ∥ S = ∥ S x ∥ \|x\|_S=\|Sx\| xS=Sx
for x ∈ C n x\in C^n xCn.Then ∥ ⋅ ∥ S \|\cdot \|_S S is a norm on C n C^n Cn.

Consider the complex vector space V = M m , n V = M_{m,n} V=Mm,n with the Frobenius inner product:
⟨ A , B ⟩ F = t r B ∗ A ⟨A,B⟩_F =tr B^* A A,BF=trBA

The norm derived from the Frobenius inner product is the l2-norm(Frobenius norm) on M m , n : ∥ A ∥ 2 = ( t r A ∗ A ) 1 / 2 M_{m,n}:\|A\|_2 = (tr A^* A)^{1/2} Mm,n:A2=(trAA)1/2


6 Matrix norms

矩阵范式(matrix norm)定义如下:

A function ∣ ∥ ⋅ ∥ ∣ | \| \cdot \| | : M n → R M_n \to R MnR is a matrix norm if, for all A , B ∈ M n A, B \in M_n A,BMn, it satisfies the following five axioms:
( 1 ) ∣ ∥ A ∥ ∣ ≥ 0 ( 1 a ) ∣ ∥ A ∥ ∣ = 0  if and only if  A = 0 ( 2 ) ∣ ∥ c A ∥ ∣ = ∣ c ∣ ∣ ∥ A ∥ ∣  for all  c ∈ C ( 3 ) ∣ ∥ A + B ∥ ∣ ≤ ∣ ∥ A ∥ ∣ + ∣ ∥ B ∥ ∣ ( 4 ) ∣ ∥ A B ∥ ∣ ≤ ∣ ∥ A ∥ ∣ ∣ ∥ B ∥ ∣ \begin{aligned} &(1)\quad | \| A \| | \ge 0 \\ &(1a)\quad | \| A \| | = 0 \text{ if and only if } A = 0 \\ &(2) \quad| \| cA \| | = |c| | \| A \| | \text{ for all } c \in C \\ &(3)\quad | \| A+B \| | \le | \| A \| | + | \| B \| | \\ &(4)\quad | \| AB \| | \le | \| A \| | | \| B \| | \\ \end{aligned} (1)A0(1a)A=0 if and only if A=0(2)cA=cA for all cC(3)A+BA+B(4)ABAB

matrix norm有时被称为ring norm, 可以看出前四个属性的定义和norm的一样,矩阵范式多了(4)。如果只满足前四个而不满足(4),则称之为vector norm on matrices, 有时也称为generalized matrix norm。

由性质(4), ∣ ∥ A 2 ∥ ∣ ≤ ∣ ∥ A ∥ ∣ ∣ ∥ A ∥ ∣ ≤ ∣ ∥ A ∥ ∣ 2 \quad | \| A^2 \| | \le | \| A \| | | \| A \| | \le | \| A \| |^2 A2AAA2,若 A 2 = A A^2 = A A2=A,则有 ∣ ∥ A ∥ ∣ ≥ 1 | \| A \| |\ge 1 A1。所以可推出 ∣ ∥ I ∥ ∣ ≥ 1 | \| I \| | \ge 1 I1,若A是非奇异矩阵(non-singular),有 I = A − 1 A I=A^{-1}A I=A1A,$\quad | | I| | \le | | A^{-1} | | \cdot | | A | | , 可 以 获 得 一 个 下 界 , ,可以获得一个下界, | | A^{-1} | | \ge \frac{| | I| |}{| | A | |}$ ,

l 1 l_1 l1-norm

对于矩阵 A ∈ M n A\in M_n AMn,它的 l 1 l_1 l1-norm定义为,
∥ A ∥ 1 = ∑ i , j = 1 n ∣ a i j ∣ \| A \|_1= \sum_{i,j=1}^{n} |a_{ij}| A1=i,j=1naij

l 2 l_2 l2-norm (Frobenius norm, Schur norm, or Hilbert–Schmidt norm)

∥ A ∥ 2 = ∣ t r A A ∗ ∣ 1 / 2 = ( ∑ i , j = 1 n ∣ a i j ∣ 2 ) 1 / 2 \| A \|_2= | tr AA^{*} |^{1/2} =\left ( \sum_{i,j=1}^{n} |a_{ij}|^2 \right )^{1/2} A2=trAA1/2=(i,j=1naij2)1/2


7 Vector norms on matrices


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值