Lecture 8:Norms of Vectors and Matrices

矩阵和向量的范式(Norms for Vectors and Matrices)


1 Vector Norms

pForm
1 ∥ v ∥ 1 = ∣ v 1 ∣ + ⋯ + ∣ v n ∣ \|v\|_1=\vert v_1 \vert+\cdots+ \vert v_n \vert v1=v1++vn
2 ∥ v ∥ 2 = ∣ v 1 ∣ 2 + ⋯ + ∣ v n ∣ 2 \|v\|_2=\sqrt{\vert v_1 \vert^ 2+\cdots+\vert v_n \vert^2} v2=v12++vn2
∞ \infty ∥ v ∥ ∞ = max ⁡ { ∣ v 1 ∣ , ⋯   , ∣ v n ∣ } \|v\|_\infty= \max \{\vert v_1 \vert ,\cdots, \vert v_n \vert \} v=max{v1,,vn}
0 ∥ v ∥ 0 = number of non-zero componnets \|v\|_0= \text{number of non-zero componnets} v0=number of non-zero componnets
S ∥ v ∥ S = v T S v \|v\|_S= \sqrt{v^TSv} vS=vTSv

l1-norm

C n \mathbf{C}^n Cn上的和范式(sum norm),也叫l1-范式(l1-norm),定义如下:
∥ v ∥ 1 = ∣ v 1 ∣ + ⋯ + ∣ v n ∣ \|v\|_1=|v_1|+\cdots+|v_n| v1=v1++vn
通常也被称为曼哈顿范式(Manhattan norm)。

l2-norm

一个向量 v = [ v 1 , . . . , v n ] T ∈ C n v=[v_1,...,v_n]^T\in \mathbf{C}^n v=[v1,...,vn]TCn的欧几里得范式(Euclidean norm),也叫l2范式(l2-norm),定义如下:
∥ v ∥ 2 = ( ∣ v 1 ∣ 2 + ⋯ + ∣ v n ∣ 2 ) 1 / 2 \|v\|_2=(|v_1|^2+\cdots+|v_n|^2)^{1/2} v2=(v12++vn2)1/2
经常使用 ∥ x − y ∥ 2 \|x-y\|_2 xy2来衡量两个点 x , y ∈ C n x,y\in \mathbf{C}^n x,yCn的欧几里得距离(Euclidean distance)。

infinity-norm

C n \mathbf{C}^n Cn上的max norm( l ∞ l_\infty l-norm)为:
∥ v ∥ ∞ = max ⁡ { ∣ v 1 ∣ , ⋯   , ∣ v n ∣ } \|v\|_\infty= \max \{|v_1|,\cdots,|v_n| \} v=max{v1,,vn}

0-norm

C n \mathbf{C}^n Cn上的 l 0 l_0 l0-norm为非零部分的个数。
∥ v ∥ 0 = number of non-zeros \|v\|_0 = \text{number of non-zeros} v0=number of non-zeros

S-norm

S为对称正定矩阵(symmetric positive definite),例如 S = ( 2 0 0 3 ) S= \left( \begin{array}{ccc} 2 & 0 \\ 0&3 \end{array} \right) S=(2003) ∥ v ∥ S = v T S v = 2 v 1 2 + 3 v 2 2 \|v\|_S =\sqrt{\mathbf{v}^TS\mathbf{v}}=\sqrt{2v_1^2+3v_2^2} vS=vTSv =2v12+3v22

一般的, C n \mathbf{C}^n Cn上的 l p l_p lp-norm定义为:
∥ v ∥ p = ( ∣ v 1 ∣ p + ⋯ + ∣ v n ∣ p ) 1 / p , p ≥ 1 \|v\|_p=(|v_1|^p+\cdots+|v_n|^p)^{1/p},\quad p\ge 1 vp=(v1p++vnp)1/p,p1

以二维向量 v = ( v 1 , v 2 ) \mathbf{v}=(v_1, v_2) v=(v1,v2)举例,范式的值恰好为1的图像如下,其中横轴代表 v 1 v_1 v1,纵轴代表 v 2 v_2 v2

l1范式,即 ∥ v ∥ 1 = ∣ v 1 ∣ + ∣ v 2 ∣ = 1 \|v\|_1=|v_1|+|v_2|=1 v1=v1+v2=1

l2范式,即 ∥ v ∥ 2 = ∣ v 1 ∣ 2 + ∣ v 2 ∣ 2 = 1 \|v\|_2=\sqrt{|v_1|^2+|v_2|^2}=1 v2=v12+v22 =1

Infinity范式,即 ∥ v ∥ ∞ = max ⁡ { ∣ v 1 ∣ , ∣ v 2 ∣ } = 1 \|v\|_\infty= \max \{|v_1|,|v_2| \}=1 v=max{v1,v2}=1

0范式,即 ∥ v ∥ 0 = number of non-zeros = 1 \|v\|_0 = \text{number of non-zeros}=1 v0=number of non-zeros=1

S范式,还是上面那个例子, ∥ v ∥ S = v T S v = 2 v 1 2 + 3 v 2 2 = 1 \|v\|_S =\sqrt{\mathbf{v}^TS\mathbf{v}}=\sqrt{2v_1^2+3v_2^2}=1 vS=vTSv =2v12+3v22 =1,即 2 v 1 2 + 3 v 2 2 = 1 2v_1^2+3v_2^2=1 2v12+3v22=1,结果是一个椭圆

所以对满足前提条件下,最小化一个向量的范式的问题如下,这里举例最小化l1范式和l2范式,令 x = [ x 1 , x 2 ] T ∈ R 2 \mathbf{x} = [x_1, x_2]^T \in \mathbb{R}^2 x=[x1,x2]TR2
min  ∥ x ∥ 1  or  ∥ x ∥ 1 subject to:  c 1 x 1 + c 2 x 2 = b \text{min } \|x\|_1 \text{ or } \|x\|_1 \\ \text{subject to: } c_1x_1 + c_2x_2 = b min x1 or x1subject to: c1x1+c2x2=b


2 Matrix norms

pForm
2 ∥ A ∥ 2 = σ 1 \|A\|_2=\sigma_1 A2=σ1
Frobenius ∥ A ∥ F = ∑ i , j = 1 n ∣ a i j ∣ 2 = σ 1 2 + ⋯ + σ n 2 \|A\|_F=\sqrt{ \sum_{i,j=1}^{n} \vert a_{ij} \vert^2 }=\sqrt{\sigma_1^2+\cdots+\sigma_n^2} AF=i,j=1naij2 =σ12++σn2
Nuclear ∥ A ∥ N = σ 1 + ⋯ + σ r \|A\|_N= \sigma_1+\cdots+\sigma_r AN=σ1++σr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值