gpu同时使用多张显卡

我的双卡工作站,有一个gpu打不开,限制正常使用。在完成了cuda等工具和python pytorch环境搭建后,可以使用下面的命令,来打开多张显卡:

sudo nvidia-smi -pm 1

这样就可以,开启 GPU 持续模式同时使用多张显卡啦。

PyTorch支持使用多个GPU进行并行计算,可以大大加速模型训练和推断的速度。以下是一些在PyTorch中使用多个GPU的常见方法: 1. 使用nn.DataParallel包装模型:将模型封装在nn.DataParallel中,可以自动将模型的输入数据划分到多个GPU上进行并行计算。例如: ```python import torch.nn as nn model = nn.DataParallel(model) ``` 2. 手动分配模型操作:对于一些需要手动分配的操作(例如,将数据加载到每个GPU上),可以使用torch.nn.parallel模块中的函数来实现。例如: ```python import torch.nn.parallel import torch.backends.cudnn as cudnn # 将模型放置在多个GPU上 model = nn.DataParallel(model, device_ids=[0, 1, 2]) # 设置CUDA加速 cudnn.benchmark = True # 加载数据到GPU inputs, labels = inputs.cuda(), labels.cuda() # 在多个GPU上进行并行计算 outputs = nn.parallel.data_parallel(model, inputs, device_ids=[0, 1, 2]) ``` 3. 使用DistributedDataParallel:DistributedDataParallel是PyTorch 1.0中引入的一种分布式训练方法,可以在多个机器和多个GPU之间进行并行计算。使用DistributedDataParallel需要设置一些环境变量和启动脚本。例如: ```python import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP # 设置环境变量 os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12345' os.environ['WORLD_SIZE'] = '2' os.environ['RANK'] = '0' # 启动多个进程 mp.spawn(train, nprocs=2, args=(args,)) # 在每个进程中初始化分布式环境 dist.init_process_group(backend='nccl', rank=args.rank, world_size=args.world_size) # 将模型放置在多个GPU上 model = DDP(model) ``` 以上是一些在PyTorch中使用多个GPU进行并行计算的常见方法,具体使用哪种方法取决于你的应用场景和硬件环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值