捷联惯导系统学习5.3(kalman 滤波方程推导 )

什么是状态空间

什么是状态空间
状态是指在系统中可决定系统状态、最小数目变量的有序集合。 而所谓状态空间则是指该系统全部可能状态的集合。
状态空间表示法
即为一种将物理系统表示为一组输入、输出及状态的数学模式,而输入、输出及状态之间的关系可用许多一阶微分方程来描述。
为了使数学模式不受输入、输出及状态的个数所影响,输入、输出及状态都会以向量的形式表示,而微分方程(若是线性非时变系统,可将微分方程转变为代数方程)则会以矩阵的形式来来表示。
状态转移矩阵 (转移概率矩阵)
状态转移是指客观事物由一种状态转移到另一种状态的概率
其他

随机系统状态空间模型

系统状态空间
X k : n 维 状 态 向 量 X_k:n维状态向量 Xk:n
Z k : m 维 测 量 向 量 Z_k:m维测量向量 Zk:m
Φ k / k − 1 : 已 知 的 系 统 结 构 参 数 \Phi_{k/k-1}:已知的系统结构参数 Φk/k1:
Γ k / k − 1 : 已 知 的 系 统 结 构 参 数 , 分 别 为 n × l 阶 系 统 分 配 噪 声 \Gamma_{k/k-1}:已知的系统结构参数,分别为n×l阶系统分配噪声 Γk/k1:n×l
H k : 已 知 的 系 统 结 构 参 数 , 分 别 为 m × n 阶 测 量 矩 阵 H_k:已知的系统结构参数,分别为m×n阶测量矩阵 Hk:m×n
V k : m 维 测 量 噪 声 , 高 斯 白 噪 声 , 服 从 正 太 分 布 V_k:m维测量噪声,高斯白噪声,服从正太分布 Vk:m
W k − 1 : m 维 系 统 噪 声 向 量 , 高 斯 白 噪 声 , 服 从 正 太 分 布 W_{k-1}:m维系统噪声向量,高斯白噪声,服从正太分布 Wk1:m
V k 与 W k − 1 互 不 相 关 V_k与W_{k-1}互不相关 VkWk1
{ X k = Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 Z k = H k X k + V k s t . { E [ W k ] = 0 , E [ W k W j T ] = Q k δ k j Q k ≥ 0 E [ V k ] = 0 , E [ V k V j T ] = R k δ k j , E [ W k V j T ] = 0 R ≥ 0 \begin{cases} X_k=\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}\\ Z_k=H_kX_k+V_k\\ \end{cases} \\ st. \\ \begin{cases} E[W_k]=0,E[W_kW_j^T]=Q_k\delta_{kj} &Q_k \geq 0\\ E[V_k]=0,E[V_kV_j^T]=R_k\delta_{kj},E[W_kV_j^T]=0&R\geq 0\\ \end{cases} {Xk=Φk/k1Xk1+Γk/k1Wk1Zk=HkXk+Vkst.{E[Wk]=0,E[WkWjT]=QkδkjE[Vk]=0,E[VkVjT]=Rkδkj,E[WkVjT]=0Qk0R0

滤波方程的推导

k-1时刻系统的观测方程和系统方程
使用最小方差估计:
X ^ k − 1 : 状 态 估 计 值 \hat{X}_{k-1} :状态估计值 X^k1:
X ~ k − 1 : 状 态 估 计 值 与 实 际 值 的 误 差 \tilde X_{k-1} :状态估计值与实际值的误差 X~k1:
P k − 1 : 均 方 误 差 P_{k-1} :均方误差 Pk1:
X ~ k − 1 = X k − 1 − X ^ k − 1 ( 系 统 方 程 ) P k − 1 = E [ X ~ k − 1 X ~ k − 1 T ] = E [ ( X k − 1 − X ^ k − 1 ) ( X k − 1 − X ^ k − 1 ) T ] ( 观 测 方 程 ) \tilde X_{k-1}=X_{k-1}-\hat{X}_{k-1} (系统方程)\\ P_{k-1}=E[\tilde X_{k-1}\tilde X_{k-1}^T]=E[(X_{k-1}-\hat{X}_{k-1})(X_{k-1}-\hat{X}_{k-1})^T](观测方程) X~k1=Xk1X^k1Pk1=E[X~k1X~k1T]=E[(Xk1X^k1)(Xk1X^k1)T]
根据状态估计值( X ^ k − 1 \hat{X}_{k-1} X^k1) 获得系统方程最优值(0均值噪声不会对最优值造成影响)
X k / k − 1 : 最 优 估 计 值 ( 也 称 状 态 一 步 估 计 ) X_{k/k-1}:最优估计值(也称状态一步估计) Xk/k1:()
X ^ k / k − 1 = E [ Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 ] = Φ k / k − 1 X k − 1 \hat X_{k/k-1}=E[\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}]=\Phi_{k/k-1}X_{k-1} X^k/k1=E[Φk/k1Xk1+Γk/k1Wk1]=Φk/k1Xk1
获得系统方程最优估计值测量误差
X ~ k / k − 1 : 获 得 最 优 估 计 值 测 量 误 差 \tilde X_{k/k-1}:获得最优估计值测量误差 X~k/k1:
X ~ k / k − 1 = Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 − X ^ k / k − 1 = Φ k / k − 1 X ~ k − 1 + Γ k / k − 1 W k − 1 \tilde X_{k/k-1}=\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}-\hat X_{k/k-1}=\Phi_{k/k-1}\tilde X_{k-1}+\Gamma_{k/k-1}W_{k-1} X~k/k1=Φk/k1Xk1+Γk/k1Wk1X^k/k1=Φk/k1X~k1+Γk/k1Wk1
获得系统方程最优估计值的均方误差矩阵
X ~ k − 1 与 W k − 1 不 相 关 \tilde X_{k-1}与W_{k-1}不相关 X~k1Wk1
P k / k − 1 : 最 优 估 计 值 的 均 方 误 差 P_{k/k-1}:最优估计值的均方误差 Pk/k1:
P k / k − 1 = E [ X ~ k − 1 X ~ k − 1 T ] = E [ X ~ k − 1 X ~ k − 1 T ] = E [ ( Φ k / k − 1 X ~ k − 1 + Γ k / k − 1 W k − 1 ) ( Φ k / k − 1 X ~ k − 1 + Γ k / k − 1 W k − 1 ) T ] = Φ k / k − 1 E [ X ~ k − 1 X ~ k − 1 T ] Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T = Φ k / k − 1 P k − 1 Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 P_{k/k-1}=E[\tilde X_{k-1}\tilde X_{k-1}^T]\\ =E[\tilde X_{k-1}\tilde X_{k-1}^T] \\ =E[(\Phi_{k/k-1}\tilde X_{k-1}+\Gamma_{k/k-1}W_{k-1})(\Phi_{k/k-1}\tilde X_{k-1}+\Gamma_{k/k-1}W_{k-1})^T]\\ =\Phi_{k/k-1}E[\tilde X_{k-1}\tilde X_{k-1}^T]\Phi_{k/k-1}^T+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T\\ =\Phi_{k/k-1}P_{k-1}\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1} Pk/k1=E[X~k1X~k1T]=E[X~k1X~k1T]=E[(Φk/k1X~k1+Γk/k1Wk1)(Φk/k1X~k1+Γk/k1Wk1)T]=Φk/k1E[X~k1X~k1T]Φk/k1T+Γk1Qk1Γk1T=Φk/k1Pk1Φk/k1T+Γk1Qk1Γk1
同理可得测量方程的,估计值、误差、均方差矩阵
{ Z ^ k / k − 1 = E [ H k X k + V k ] = H k X ^ k / k − 1 最 优 估 计 值 / 最 优 一 步 估 计 Z ~ k / k − 1 = Z k − Z ^ k / k − 1 = ( H k X k + V k ) − H k X ^ k / k − 1 = H k X ~ k / k − 1 + V k 最 优 估 计 值 的 误 差 / 最 优 一 步 估 计 误 差 P Z Z , k / k − 1 = E [ Z ~ k / k − 1 Z ~ k / k − 1 T ] = H k E [ X ~ k / k − 1 X ~ k / k − 1 T ] H k T + E [ V k V k T ] = H k P k / k − 1 H k T + R k 最 优 一 步 估 计 的 均 方 差 P X Z , k / k − 1 = E [ X ~ k / k − 1 Z ~ k / k − 1 T ] = E [ X ~ k / k − 1 ( H k X ~ k / k − 1 + V k ) T ] = P k / k − 1 H k T 最 优 一 步 估 计 的 协 方 差 \begin{cases} \hat Z_{k/k-1}=E[H_kX_k+V_k]=H_k\hat X_{k/k-1}&最优估计值/最优一步估计\\ \tilde Z_{k/k-1}=Z_k-\hat Z_{k/k-1}=(H_kX_k+V_k)-H_k\hat X_{k/k-1}=H_k\tilde X_{k/k-1}+V_k&最优估计值的误差/最优一步估计误差\\ P_{ZZ,k/k-1}=E[\tilde Z_{k/k-1}\tilde Z_{k/k-1}^T]=H_kE[\tilde X_{k/k-1}\tilde X_{k/k-1}^T]H_k^T+E[V_kV_k^T]=H_kP_{k/k-1}H_k^T+R_k &最优一步估计的均方差\\ P_{XZ,k/k-1}=E[\tilde X_{k/k-1}\tilde Z_{k/k-1}^T]=E[\tilde X_{k/k-1}(H_k\tilde X_{k/k-1}+V_k)^T]=P_{k/k-1}H_k^T&最优一步估计的协方差\\ \end{cases} Z^k/k1=E[HkXk+Vk]=HkX^k/k1Z~k/k1=ZkZ^k/k1=(HkXk+Vk)HkX^k/k1=HkX~k/k1+VkPZZ,k/k1=E[Z~k/k1Z~k/k1T]=HkE[X~k/k1X~k/k1T]HkT+E[VkVkT]=HkPk/k1HkT+RkPXZ,k/k1=E[X~k/k1Z~k/k1T]=E[X~k/k1(HkX~k/k1+Vk)T]=Pk/k1HkT//
修正系数 K k K_k Kk
从上方的计算可以的得到,测量方程和系统方程的最优值,使用 Z ^ k / k − 1 ( 测 量 方 程 一 步 估 计 误 差 ) \hat Z_{k/k-1}(测量方程一步估计误差) Z^k/k1修正 X ^ k / k − 1 ( 系 统 方 程 一 步 估 计 值 ) \hat X_{k/k-1}(系统方程一步估计值) X^k/k1可以进一步提高精度,即:
K k : 误 差 修 正 系 数 ( 滤 波 增 益 f i l t e r g a i n ) K_k:误差修正系数(滤波增益 filter gain) Kk:filtergain
Z ~ k / k − 1 : ^ 新 息 ( i n n o v a t i o n ) \tilde Z_{k/k-1}\hat:新息(innovation) Z~k/k1:^innovation
X ^ k = X ^ k / k − 1 + K k Z ~ k / k − 1 ( 当 前 值 = 前 一 状 态 估 计 值 + K k 测 量 预 测 误 差 ) = ( I − K k H k ) X ^ k / k − 1 + K k Z k = ( I − K k H k ) Φ k / k − 1 X ^ k − 1 + K k Z k \hat X_k=\hat X_{k/k-1}+K_k\tilde Z_{k/k-1}(当前值=前一状态估计值+K_k测量预测误差)\\ =(I-K_kH_k)\hat X_{k/k-1}+K_kZ_k \\ =(I-K_kH_k)\Phi_{k/k-1}\hat X_{k-1}+K_kZ_k X^k=X^k/k1+KkZ~k/k1(=+Kk)=(IKkHk)X^k/k1+KkZk=(IKkHk)Φk/k1X^k1+KkZk

修正系数 K k K_k Kk的确定

k时刻系统的观测方程和系统方程
X ~ k = X k − X ^ k \tilde X_k=X_k-\hat X_k X~k=XkX^k
X ^ k = ( I − K k H k ) X ^ k / k − 1 + K k Z k 带 入 \hat X_k=(I-K_kH_k)\hat X_{k/k-1}+K_kZ_k带入 X^k=(IKkHk)X^k/k1+KkZk
Z k = H k X k + V k Z_k=H_kX_k+V_k Zk=HkXk+Vk
X ~ k = ( I − K k H k ) X ~ x / x − 1 − K k V k \tilde X_k=(I-K_kH_k)\tilde X_{x/x-1}-K_kV_k X~k=(IKkHk)X~x/x1KkVk
k时刻 X ^ k \hat X_k X^k的均方误差阵
P k = E [ X ~ k X ~ k T ] = E [ ( I − K k H k ) X ~ x / x − 1 − K k V k ) ( I − K k H k ) X ~ x / x − 1 − K k V k ) T ] = ( I − K k H k ) E [ X x / x − 1 X x / x − 1 T ] ( I − K k H k ) T + K k E [ V k V k T ] K k T = ( I − K k H k ) P k / k − 1 ( I − K k H k ) T + K k R k K k T P_k=E[\tilde X_k\tilde X_k^T] \\ =E[(I-K_kH_k)\tilde X_{x/x-1}-K_kV_k)(I-K_kH_k)\tilde X_{x/x-1}-K_kV_k)^T]\\ =(I-K_kH_k)E[X_{x/x-1}X_{x/x-1}^T](I-K_kH_k)^T+K_kE[V_kV_k^T]K_k^T \\ =(I-K_kH_k)P_{k/k-1}(I-K_kH_k)^T+K_kR_kK_k^T Pk=E[X~kX~kT]=E[(IKkHk)X~x/x1KkVk)(IKkHk)X~x/x1KkVk)T]=(IKkHk)E[Xx/x1Xx/x1T](IKkHk)T+KkE[VkVkT]KkT=(IKkHk)Pk/k1(IKkHk)T+KkRkKkT
k时刻估计误差最小
E [ X ~ k X ~ k T ] ∣ m i n = t r ( P k ) m i n = t r ( ( I − K k H k ) P k / k − 1 ( I − K k H k ) T + K k R k K k T ) = t r ( P k / k − 1 ) − t r ( K k H k P k / k − 1 ) − t r ( ( K k H k P k / k − 1 ) T ) + t r ( K k ( H k P k / k − 1 H k T + R k ) K k T ) E[\tilde X_k\tilde X_k^T]|_{min}=tr(P_k)_{min} \\ =tr((I-K_kH_k)P_{k/k-1}(I-K_kH_k)^T+K_kR_kK_k^T)\\ =tr(P_{k/k-1})-tr(K_kH_kP_{k/k-1})-tr((K_kH_kP_{k/k-1})^T)+tr(K_k(H_kP_{k/k-1}H_k^T+R_k)K_k^T) E[X~kX~kT]min=tr(Pk)min=tr((IKkHk)Pk/k1(IKkHk)T+KkRkKkT)=tr(Pk/k1)tr(KkHkPk/k1)tr((KkHkPk/k1)T)+tr(Kk(HkPk/k1HkT+Rk)KkT)
k时刻估计误差求极小值,即导数值为0的点
已知两个方阵迹的求导等式:
d d X t r ( X B ) = d d X t r ( ( X B ) T ) = B T \frac{d}{dX}tr(XB)=\frac{d}{dX}tr((XB)^T)=B^T dXdtr(XB)=dXdtr((XB)T)=BT
d d X t r ( X A X T ) = 2 X A \frac{d}{dX}tr(XAX^T)=2XA dXdtr(XAXT)=2XA
d d K k t r ( P ) = 0 − ( H k P k / k − 1 ) T − ( H k P k / k − 1 ) T + 2 K k ( H k P k / k − 1 H k T + R k ) = 2 [ K k ( H k P k / k − 1 H k T + R k ) − P k / k − 1 H k T ] = 0 \frac{d}{dK_k}tr(P)=0-(H_kP_{k/k-1})^T-(H_kP_{k/k-1})^T+2K_k(H_kP_{k/k-1}H_k^T+R_k)\\ =2[K_k(H_kP_{k/k-1}H_k^T+R_k)-P_{k/k-1}H_k^T]=0 dKkdtr(P)=0(HkPk/k1)T(HkPk/k1)T+2Kk(HkPk/k1HkT+Rk)=2[Kk(HkPk/k1HkT+Rk)Pk/k1HkT]=0
解得 K k K_k Kk
K k = P k / k − 1 H k T ( H k P k / k − 1 H k T − R k ) − 1 K_k=P_{k/k-1}H_k^T(H_kP_{k/k-1}H_k^T-R_k)^{-1} Kk=Pk/k1HkT(HkPk/k1HkTRk)1
P k = ( I − K k H k ) P k / k − 1 P_k=(I-K_kH_k)P_{k/k-1} Pk=(IKkHk)Pk/k1

得到5个公式

{ X ^ k / k − 1 = Φ k / k − 1 X ^ k − 1 状 态 一 步 预 测 P k / k − 1 = Φ k / k − 1 P k − 1 Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T 状 态 一 步 预 测 均 方 差 阵 K k = P k / k − 1 H k T ( H k P k / k − 1 H k T − R k ) − 1 滤 波 增 益 X ^ k = ( I − K k H k ) X ^ k / k − 1 + K k Z k 状 态 估 计 P k = ( I − K k H k ) P k / k − 1 状 态 估 计 均 方 误 差 阵 \begin{cases} \hat X_{k/k-1}=\Phi_{k/k-1}\hat X_{k-1}&状态一步预测\\ P_{k/k-1}=\Phi_{k/k-1}P_{k-1}\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T&状态一步预测均方差阵\\ K_k=P_{k/k-1}H_k^T(H_kP_{k/k-1}H_k^T-R_k)^{-1}&滤波增益\\ \hat X_k=(I-K_kH_k)\hat X_{k/k-1}+K_kZ_k&状态估计\\ P_k=(I-K_kH_k)P_{k/k-1}&状态估计均方误差阵\\ \end{cases} X^k/k1=Φk/k1X^k1Pk/k1=Φk/k1Pk1Φk/k1T+Γk1Qk1Γk1TKk=Pk/k1HkT(HkPk/k1HkTRk)1X^k=(IKkHk)X^k/k1+KkZkPk=(IKkHk)Pk/k1
K k K_k Kk的等价公式
{ K k = P k / k − 1 H k T ( H k P k / k − 1 H k T − R k ) − 1 滤 波 增 益 K k = P k H k T R k − 1 \begin{cases} K_k=P_{k/k-1}H_k^T(H_kP_{k/k-1}H_k^T-R_k)^{-1}&滤波增益\\ K_k=P_kH^T_kR_k^{-1}\\ \end{cases} {Kk=Pk/k1HkT(HkPk/k1HkTRk)1Kk=PkHkTRk1
P k P_k Pk的等价公式
{ P k = ( I − K k H k ) P k / k − 1 P k = P k / k − 1 − K k ( H k P k / k − 1 H k T + R k ) K k T P k = ( I − K k H k ) P k / k − 1 ( I − K k H k ) T + K k R k K k T ( J o s e 算 法 , 数 值 对 称 性 和 稳 定 相 对 比 前 两 个 较 好 ) P k − 1 = P k / k − 1 − 1 + H k T R k − 1 H k ( 存 在 多 个 求 逆 运 算 不 推 荐 使 用 ) \begin{cases} P_k=(I-K_kH_k)P_{k/k-1}\\ P_k=P_{k/k-1}-K_k(H_kP_{k/k-1}H_{k}^T+R_k)K_k^T\\ P_k=(I-K_kH_k)P_{k/k-1}(I-K_kH_k)^T+K_kR_kK_k^T(Jose算法,数值对称性和稳定相对比前两个较好)\\ P_k^{-1}=P_{k/k-1}^{-1}+H_k^TR_k^{-1}H_k(存在多个求逆运算不推荐使用)\\ \end{cases} Pk=(IKkHk)Pk/k1Pk=Pk/k1Kk(HkPk/k1HkT+Rk)KkTPk=(IKkHk)Pk/k1(IKkHk)T+KkRkKkT(Jose,)Pk1=Pk/k11+HkTRk1Hk(使)
一个实例讲解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 惯导速度的Kalman滤波是一种用于估计目标速度的多变量滤波技术。它结合了惯性传感器和位置测量,通过对这两种信息的融合,能够提供更准确的速度估计结果。 Kalman滤波是一种递归滤波算法,它基于一个状态空间模型和一系列观测数据,通过不断迭代的更新过程,估计系统的状态。在惯导速度的Kalman滤波中,状态空间模型包括系统的速度和加速度,观测数据包括位置和加速度测量。 Kalman滤波基于贝叶斯定理,通过计算先验和后验估计值的加权平均来更新状态估计值。滤波过程分为两个步骤:预测和更新。在预测步骤中,根据先前的状态估计和状态转移模型,预测下一个状态的估计值。在更新步骤中,根据测量数据和观测模型,校正预测的状态估计值。 对于惯导速度的Kalman滤波,通常使用加速度计和陀螺仪测量目标的加速度和角速度,并结合位置测量数据。这些传感器提供的信息不仅可以用于速度的估计,还可以用于姿态估计和位置估计。 Kalman滤波的优势在于它能够有效地融合不同来源的信息,通过对测量误差和不确定性的建模,提供更稳健和准确的估计结果。它在导航、目标跟踪和航空航天等领域具有广泛的应用。 ### 回答2: 惯性导航系统(Inertial Navigation System,简称INS)是一种用来测量和跟踪运动物体位置、姿态和速度的技术。INS一般由陀螺仪(测量角速度)和加速度计(测量加速度)组成。 在INS中,惯导速度的Kalman滤波是一种常用的数据融合算法,用于估计和更新物体的速度信息。Kalman滤波是一种最优估计算法,通过对观测值和模型进行加权融合,可以在噪声环境下提供较为准确的估计结果。 具体来说,惯导速度的Kalman滤波可以通过以下步骤实现: 1. 建立状态模型:根据物体的运动特性建立状态模型,通常采用运动学方程进行描述,例如线性加速度模型。 2. 设置初始状态和协方差:根据实际情况设定物体初始状态的估计和不确定性协方差矩阵。 3. 预测状态和协方差:利用状态模型和上一时刻的状态估计,预测当前时刻的状态和协方差。 4. 更新观测值和协方差:通过采集的加速度计数据进行更新,计算当前时刻的观测残差和观测协方差。 5. 执行Kalman增益计算:计算Kalman增益,用于更新状态和协方差。 6. 更新状态和协方差:利用Kalman增益,校正预测的状态和协方差。 通过以上步骤的迭代,惯导速度的Kalman滤波可以不断更新和改善速度估计结果,提高位置和姿态的精确度。 需要注意的是,Kalman滤波的性能受到模型准确性和噪声分布的影响。因此,在实际应用中,需要根据具体情况进行算法参数的调整和修正,以获得更好的滤波效果。 ### 回答3: 惯导速度的Kalman滤波是一种用于估计和过滤惯导系统中速度的算法。Kalman滤波是一种递归滤波技术,能够根据系统动态模型和测量数据,实时更新估计值,并提供最优估计。 在惯导系统中,速度是由加速度测量值与时间积分得到的。然而,加速度测量存在噪声和误差,因此速度估计也会受到这些噪声的影响。Kalman滤波通过考虑测量误差和系统动态来进行估计值的优化。 Kalman滤波的基本原理是利用系统模型和测量值的协方差矩阵来计算最优估计。首先,通过系统模型预测当前时刻的速度估计值,并计算估计值的不确定性(协方差矩阵)。然后,利用加速度测量值与预测值的差异来更新估计值和协方差矩阵。更新过程中,加速度测量值的精度和系统模型的准确性都会被考虑。 Kalman滤波算法的关键是协方差矩阵的更新。协方差矩阵能够反映估计值和测量值之间的不确定性。当测量值的精度较高时,协方差矩阵的权重将更倾向于测量值;而当测量值含有较大噪声时,协方差矩阵的权重将更倾向于估计值。这样可以有效地消除噪声对估计值的影响,提供更准确的速度估计结果。 总结来说,惯导速度的Kalman滤波是一种基于系统模型和测量值的协方差矩阵的递归滤波算法。它能够根据测量值和系统模型的准确性,提供最优的速度估计值,并适应不同噪声条件下的测量环境。这种算法在航空航天、导航和自动驾驶等领域中得到广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值