机器学习-sklearn网格搜索法

本文介绍了如何利用sklearn的GridSearchCV进行机器学习模型参数的优化。网格搜索法允许遍历所有可能的参数组合,以找到最佳参数设置,提升模型性能。
摘要由CSDN通过智能技术生成

网格搜索法可以用来寻找合适的参数,尝试所有可能的参数组合。sklearn提供的GridSearchCV类,可以通过字典来提供分类器或回归器的类型对象。字典的键我们将要调整的参数,而字典的值就是需要尝试的参数值的相应列表。

from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from pprint import PrettyPrinter
import numpy as np

def classify(x,y):
    clf = GridSearchCV(SVC(random_state=42,max_iter=100),{
  'kernel':['linear',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值