yolo v3 之自定义损失函数的代码解析

本文详细解析YOLOv3模型中自定义损失函数的计算过程,包括xy_loss、wh_loss、confidence_loss和class_loss。通过实例阐述如何根据batch_size、object_mask、box_loss_scale以及K.binary_crossentropy计算每个部分的损失,并介绍了yolo_head函数的角色和返回值。
摘要由CSDN通过智能技术生成

因为网络和实际值都是分了两层,就是y_pred=[y_pred1,y_pred2],y_true=[y_true1,y_true2],那么计算损失的时候,会把y_pred1和y_true1进行比较,计算loss1, 把y_pred2和y_true2进行比较,计算loss2,总损失loss=loss1+loss2

现在我们来先观察下loss1的计算过程,假设batch_size=4,训练样本为1.jpg,2.jpg,3.jpg,4.jpg,

loss1=xy_loss + wh_loss + confidence_loss + class_loss

其中

xy_{loss}=\frac{xy_{loss1}+xy_{loss2}+xy_{loss3}+xy_{loss4}}{batch_{size}}

xy_{lossi},i=1,2,3,4代表由图片i.jpg所产生的误差,以xy_{loss1}为例来说明其计算过程

xy_{loss1}=object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[..., 0:2], from_logits=True)

object_mask=1或, 若这个y_true中这个box有物体=1,没有物体=0

box_loss_scale=2-w*h(w,h为y_true中box的宽高)

raw_true_xy=[13*(x_true-1),13(y_true-1)] (这个是小于0的数)

raw_pred[..., 0:2]=[pred_x,pred_y]#网络预测值,直接是卷积层出来的,没有经过sigmodi函数

交叉熵=[13*(x-1),13(y-1)]*log([pred_x,pred_y])+(1-[13*(x-1),13(y-1)])*log{1-[pred_x,pred_y]}

yolo_head:

原型
 yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False)
被调用时的入参为:
grid, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值