TinyFace论文阅读总结

数据集:

WIDER FACE:包括32,203 张包含人脸图片,其中包括393,703张标注人脸。
数据集依据检测的难易程度划分为"easy",“medium”,"hard"三种类型

FDDB


检测方法:

基于两阶段检测:

1 Improve RCNN:

1.1 基础结构:

改进Faster RCNN:采用light RCNN(结合Faster rcnn和rfcn的优点,将检测器的head部分通道削减至10,减少参数量,加速检测,可与单阶段检测器速度相当)的变体结构。

1.2 多尺度操作:

将图像短边缩放至600,800,1000,1200,1400的不同长度训练,在test阶段也同样缩放,并将结果合并。

Anchor尺度:长宽比设置为1:1/1.5/2,并不是常规的1:1/0.5/2,并在anchor大小设定增加了极小尺寸16^2,有利于极小脸的检测。

2 Improve RFCN:

2.1 基础结构:

改进的RFCN,基本按照原RFCN的结构,

在RFCN的最后一曾原本为average pooling,将其改进为ps average pooling

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值