数据集:
WIDER FACE:包括32,203 张包含人脸图片,其中包括393,703张标注人脸。
数据集依据检测的难易程度划分为"easy",“medium”,"hard"三种类型
FDDB
检测方法:
基于两阶段检测:
1 Improve RCNN:
1.1 基础结构:
改进Faster RCNN:采用light RCNN(结合Faster rcnn和rfcn的优点,将检测器的head部分通道削减至10,减少参数量,加速检测,可与单阶段检测器速度相当)的变体结构。
1.2 多尺度操作:
将图像短边缩放至600,800,1000,1200,1400的不同长度训练,在test阶段也同样缩放,并将结果合并。
Anchor尺度:长宽比设置为1:1/1.5/2,并不是常规的1:1/0.5/2,并在anchor大小设定增加了极小尺寸16^2
,有利于极小脸的检测。
2 Improve RFCN:
2.1 基础结构:
改进的RFCN,基本按照原RFCN的结构,
在RFCN的最后一曾原本为average pooling,将其改进为ps average pooling