Simply put Training & Inference

For training

We will write a pretty standard pipeline, one broadly applicable to many ML problems and which has a few functions, mainly ones that:

Load records of data.

Clean data by removing incomplete records and input missing values when necessary.

Preprocess and format data in a way that can be understood by a model.

Remove a set of data that will not be trained on but used to validate model results (a validation set).

Train a model on a given subset of data and return a trained model and summary statistics.


For inference

We will leverage some functions from the training pipeline, as well as writing a few custom ones. Ideally, we would need functions that:

Load a trained model and keep it in memory (to provide faster results) Will preprocess (same as training) Gather any relevant outside information Will pass one example through a model (an inference function) Will postprocess, to clean up results before serving them to users


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

P("Struggler") ?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值