1 重要概念与公式:
1.1 样本空间——\(\Omega\)(全集),其基本元素\(\omega_i\)叫样本点
1.2 事件——样本空间的子集\(A、B、C\)…
\(\Phi\)——不可能事件
\(\Omega\)——必然事件
1.3 完备事件组
\(\cup_i{A_i}=\Omega\)
\({A_i}\cap{A_j}=\Phi (两两互斥)(交集可省略符号, 写成A_iA_j=\Phi), i\neq{j}\)
1.4 运算、关系
——略,可看集合论中的运算、关系
2 古典概型
若\(\Omega\)中有有限个、等可能的样本点,称为古典概型
$$P(A)={ {N_A}\over{N_\Omega}}$$
3 几何概型
若\(\Omega\)是一个可度量的集合区域,且样本点落入\(\Omega\)中的某一可度量子区域A的可能性大小与A的几何度量成正比,而与A的位置和形状无关,称为几何概型
$$P(A)={ {M_A}\over{M_\Omega}}$$
$$M代表度量measure,可以是面积S,长度L等$$
4 重要公式
4.1 对立事件:
$$P(A)=1-P(\bar{A})$$
4.2 事件减法:
$$P(A-B)