概率论速查手册(1)——随机事件与概率

1 重要概念与公式:

1.1 样本空间——\(\Omega\)(全集),其基本元素\(\omega_i\)叫样本点

1.2 事件——样本空间的子集\(A、B、C\)…

        \(\Phi\)——不可能事件

        \(\Omega\)——必然事件

1.3 完备事件组

        \(\cup_i{A_i}=\Omega\)

        \({A_i}\cap{A_j}=\Phi  (两两互斥)(交集可省略符号, 写成A_iA_j=\Phi), i\neq{j}\)

1.4 运算、关系

——略,可看集合论中的运算、关系

 

2 古典概型

        若\(\Omega\)中有有限个等可能的样本点,称为古典概型

$$P(A)={{N_A}\over{N_\Omega}}$$

 

3 几何概型

        若\(\Omega\)是一个可度量的集合区域,且样本点落入\(\Omega\)中的某一可度量子区域A的可能性大小与A的几何度量成正比,而与A的位置和形状无关,称为几何概型

$$P(A)={{M_A}\over{M_\Omega}}$$

$$M代表度量measure,可以是面积S,长度L等$$

 

4 重要公式

4.1 对立事件:

$$P(A)=1-P(\bar{A})$$

4.2 事件减法:

$$P(A-B)=P(A)-P(AB)$$

4.3 事件加法:

$$P(A+B)=P(A)+P(B)-P(AB)$$

$$P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)$$

互斥事件\(A_1、A_2、…、A_n\)的概率:(互斥事件"和的概率"为"概率的和")

$$P(\cup_{i=1}^n{A_i})=\sum_{i=1}^nP(A_i)$$

相互独立事件\(A_1、A_2、…、A_n\)的概率:(相互独立事件"乘积的概率"为"概率的乘积")

$$P(A_1A_2…A_n)=P(A_1)P(A_2)…P(A_n)$$

4.4 条件概率:

$$P(A|B)={{P(A)}\over{P(B)}}, P(B)>0$$

4.5 概率乘法:

$$P(AB)=P(B)P(A|B)=P(A)P(B|A)$$

4.6 全概率公式(全集分解公式):

$$P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+P(A_3)P(B|A_3)$$


举例说明:一个村子有且仅有3个小偷,这3个小偷偷东西的事件构成完备事件组(两两互斥的,就是其中1个去偷时,另外2个小偷不去偷)。这个村子失窃的概率就是全概率公式求出。这里的全概率公式表述为:

村子失窃的概率\(P(B)\)=第1个小偷去偷\(P(A_1)\)且偷成功的概率\(P(B|A_1)\)+…

推导:

$$P(B)=P(B\Omega)=P(B(A_1A_2A_3))=P(BA_1+BA_2+BA_3)=P(BA_1)+P(BA_2)+P(BA_3)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+P(A_3)P(B|A_3)$$


4.7 贝叶斯公式(逆概公式):条件同4.6,现已知\(B\)发生了!

$$P(A_j|B)={{P(A_jB)}\over{P(B)}}={{P(A_j)P(B|A_j)}\over{\sum_{i=1}^nP(A_i)P(B|A_i)}}$$

$$条件概率={{乘法公式}\over{全概率公式}}$$

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值