概率论速查手册(1)——随机事件与概率

1 重要概念与公式:

1.1 样本空间——\(\Omega\)(全集),其基本元素\(\omega_i\)叫样本点

1.2 事件——样本空间的子集\(A、B、C\)…

        \(\Phi\)——不可能事件

        \(\Omega\)——必然事件

1.3 完备事件组

        \(\cup_i{A_i}=\Omega\)

        \({A_i}\cap{A_j}=\Phi  (两两互斥)(交集可省略符号, 写成A_iA_j=\Phi), i\neq{j}\)

1.4 运算、关系

——略,可看集合论中的运算、关系

 

2 古典概型

        若\(\Omega\)中有有限个等可能的样本点,称为古典概型

$$P(A)={ {N_A}\over{N_\Omega}}$$

 

3 几何概型

        若\(\Omega\)是一个可度量的集合区域,且样本点落入\(\Omega\)中的某一可度量子区域A的可能性大小与A的几何度量成正比,而与A的位置和形状无关,称为几何概型

$$P(A)={ {M_A}\over{M_\Omega}}$$

$$M代表度量measure,可以是面积S,长度L等$$

 

4 重要公式

4.1 对立事件:

$$P(A)=1-P(\bar{A})$$

4.2 事件减法:

$$P(A-B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值