数理统计——参数估计的无偏性、有效性以及一致性(相合性)

无偏性

定义式:$$E(\hat\theta)=\theta$$

无偏估计是用样本统计量来估计总体参数时的一种无偏推断。 估计量的数学期望等于被估计参数的真实值,则称此此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。 无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。无偏估计常被应用于测验分数统计中。

无偏性的实际意义是指没有系统性的偏差。统计推断的误差有系统误差和随机误差两种。无论用什么样的估计值去估计,总会时而对某些样本偏高,时而对另一些样本偏低。而无偏性表示,把这些正负偏差在概率上平均起来,其值为零,即无偏估计量只有随机误差而没有系统误差。例如, 用样本均值作为总体均值的估计时,虽无法说明一次估计所产生的偏差,但这种偏差随机地在0的周围波动,对同一统计问题大量重复使用不会产生系统偏差。

问题:
(1)无偏估计有时并不一定存在。
(2)可估参数的无偏估计往往不唯一。
(3)无偏估计不一定是好估计。

有偏估计可以修正为无偏估计。

有效性

有效性就是看估计量的方差值,方差代表波动,波动越小越有效。

若\(D(\hat\theta_1)<D(\hat\theta_2)\)则\(\hat\theta_1\)比\(\hat\theta_2\)更加有效。


一致性(相合性)

一致性就是在大样本条件下,估计值接近真实值。
当\(\forall\varepsilon>0\)有:
$$\lim\limits_{n\to\infty}P\left(|\hat\theta-\theta|\ge\varepsilon\right)=0.$$
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值