pytorch性能分析工具Profiler

本文介绍了PyTorch的Profiler工具,用于深度学习模型的性能分析。Profiler可详细展示GPU、CPU的使用情况,算子时间消耗及GPU内核事件。通过案例展示了如何安装、使用Profiler,以及如何通过Summary、Operator、GPU Kernel和Trace进行性能分析。通过性能分析,可发现并优化模型的性能瓶颈,提高资源利用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Torch Profiler工具介绍

https://zhuanlan.zhihu.com/p/360479566

PyTorch Profiler 是一个开源工具,可以对大规模深度学习模型进行准确高效的性能分析。包括如下等功能:

  • 分析model的GPU、CPU的使用率
  • 各种算子op的时间消耗
  • trace网络在pipeline的CPU和GPU的使用情况

Profiler利用Tensorboard可视化模型的性能,帮助发现模型的瓶颈,比如CPU占用达到80%,说明影响网络的性能主要是CPU,而不是GPU在模型的推理,各种kernel的运算的消耗。此时通过模型的轻量化、以及剪枝等方式对模型的运行速度并没有帮助,降低CPU的消耗,代码的优化才是关键,从而避免在做一些无用功,帮助我们对项目性能的优化。

在这里插入图片描述

图1 性能的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值