VLM-E2E(1): Senna论文解读

在这里插入图片描述

端到端自动驾驶在大规模数据的支持下展现了强大的规划能力,但在复杂和罕见场景中仍因常识有限而表现不佳。相比之下,大规模视觉-语言模型(LVLMs)在场景理解和推理方面表现出色。未来的发展方向在于结合这两种方法的优势。以往使用 LVLMs 预测轨迹或控制信号的方法效果欠佳,因为 LVLMs 并不擅长精确的数值预测。本文提出了 Senna,一种将 LVLM(Senna-VLM)与端到端模型(Senna-E2E)结合的自动驾驶系统。Senna 将高层规划与低层轨迹预测解耦:Senna-VLM 生成自然语言的规划决策,而 Senna-E2E 预测精确的轨迹。Senna-VLM 采用多图像编码方法和多视角提示,以实现高效的场景理解。此外,我们引入了面向规划的问答(QAs)和三阶段训练策略,在保留常识的同时提升了 Senna-VLM 的规划性能。在两个数据集上的大量实验表明,Senna 实现了SOTA规划性能。值得注意的是,在大规模数据集 DriveX 上进行预训练并在 nuSce

03-10
### VLM-R1 技术概述 VLM-R1 是一种视觉语言模型(Vision-Language Model),其设计旨在实现图像与文本之间的跨模态理解。此项目托管于 GitHub 平台,由 om-ai-lab 维护并开源共享[^1]。 #### 主要特点 - **多模态融合**:能够处理来自不同感官的信息输入,比如将自然语言描述转换成对应的图像特征表示。 - **预训练架构**:采用大规模数据集进行无监督或弱监督方式下的参数初始化训练,从而获得更强大的泛化能力和迁移学习性能。 - **应用场景广泛**:适用于多种实际场景,如自动字幕生成、内容审核、智能客服等领域。 ```python import torch from transformers import CLIPProcessor, CLIPModel model_name = "om-ai-lab/VLM-R1" device = "cuda" if torch.cuda.is_available() else "cpu" processor = CLIPProcessor.from_pretrained(model_name) model = CLIPModel.from_pretrained(model_name).to(device) def get_image_text_similarity(image_path, text_input): inputs = processor(text=text_input, images=image_path, return_tensors="pt", padding=True) outputs = model(**inputs.to(device)) logits_per_image = outputs.logits_per_image.cpu().detach().numpy() probs = logits_per_image.softmax(axis=1)[0] return {"similarity": float(probs)} ``` 上述代码展示了如何加载 VLM-R1 模型并对给定的一张图片和一段文字计算相似度得分。这有助于评估两者之间语义上的关联程度。 #### 开源贡献者指南 对于有兴趣参与到该项目中的开发者而言,官方提供了详细的开发环境配置说明和技术文档支持。这些资料不仅涵盖了基础理论介绍,还包括了具体的编程实践案例分析,帮助新手快速入门并作出有价值的改进[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值