【连续介质力学】张量值张量函数

张量值张量函数

张量值张量函数有以下类型:标量,向量和高阶张量

标量值张量函数
Ψ = Ψ ( T ) = det ⁡ T Ψ = Ψ ( T , S ) = T : S \Psi = \Psi(T) =\det T \\ \Psi = \Psi(T,S) =T:S Ψ=Ψ(T)=detTΨ=Ψ(T,S)=T:S

其中, T , S T, S T,S都是二阶张量

另外,二阶张量值张量函数:
Π = Π ( T ) = α 1 + β T \Pi = \Pi(T) = \alpha 1+\beta T Π=Π(T)=α1+βT

张量级数

函数 f ( x ) f(x) f(x)可以近似表示成Taylor级数: f ( x ) = ∑ i = 0 ∞ 1 n ! ∂ n f ( a ) ∂ x n ( x − a ) n f(x) = \sum_{i=0}^{\infty}\frac{1}{n!}\frac{\partial^nf(a)}{\partial x^n}(x-a)^n f(x)=i=0n!1xnnf(a)(xa)n

那么,对于张量也同样可以推导:假设现在有一个关于二阶张量 E E E的标量值张量函数 ψ ( E ) \psi(E) ψ(E),那么可以近似表示成:
在这里插入图片描述

关于二阶张量E的二阶张量值张量函数 S ( E ) S(E) S(E),可以近似表示成:
在这里插入图片描述
其他代数表达式的级数展开:
exp ⁡ S = 1 + S + 1 2 ! S 2 + 1 3 ! S 3 + . . . ln ⁡ ( 1 + S ) = S − 1 2 S 2 + 1 3 S 3 − . . . sin ⁡ ( S ) = S − 1 3 ! S 3 + 1 5 ! S 5 \exp^S = 1+S+\frac{1}{2!}S^2+\frac{1}{3!}S^3+ ...\\ \ln (1+S) = S-\frac{1}{2}S^2+\frac{1}{3}S^3-... \\ \sin (S) = S - \frac{1}{3!}S^3+\frac{1}{5!}S^5 expS=1+S+2!1S2+3!1S3+...ln(1+S)=S21S2+31S3...sin(S)=S3!1S3+5!1S5

参考对称二阶张量 S S S的谱表示
在这里插入图片描述
可以将级数表示成:
exp ⁡ S = ∑ a = 1 3 ( 1 + λ a + 1 2 ! λ a 2 + 1 3 ! λ a 3 + . . . ) n ^ ( a ) ⨂ n ^ ( a ) = ∑ a = 1 3 exp ⁡ λ a n ^ ( a ) ⨂ n ^ ( a ) ln ⁡ ( 1 + S ) = ∑ a = 1 3 ( λ a − 1 2 λ a 2 + 1 3 λ a 3 − . . . ) n ^ ( a ) ⨂ n ^ ( a ) = ∑ a = 1 3 ln ⁡ ( 1 + λ a ) n ^ ( a ) ⨂ n ^ ( a ) sin ⁡ ( S ) = ∑ a = 1 3 ( λ a − 1 3 ! λ a 3 + 1 5 ! λ a 5 + . . . ) n ^ ( a ) ⨂ n ^ ( a ) = ∑ a = 1 3 sin ⁡ ( λ a ) n ^ ( a ) ⨂ n ^ ( a ) \exp^S = \sum_{a=1}^3(1+\lambda_a+\frac{1}{2!}\lambda_a^2+\frac{1}{3!}\lambda_a^3+ ...)\hat n^{(a)}\bigotimes \hat n^{(a)}=\sum_{a=1}^3 \exp^{\lambda_a}\hat n^{(a)}\bigotimes \hat n^{(a)}\\ \ln (1+S) = \sum_{a=1}^3(\lambda_a-\frac{1}{2}\lambda_a^2+\frac{1}{3}\lambda_a^3-...) \hat n^{(a)}\bigotimes \hat n^{(a)}=\sum_{a=1}^3\ln(1+\lambda_a)\hat n^{(a)}\bigotimes \hat n^{(a)}\\ \sin (S) = \sum_{a=1}^3(\lambda_a - \frac{1}{3!}\lambda_a^3+\frac{1}{5!}\lambda_a^5+...)\hat n^{(a)}\bigotimes \hat n^{(a)}=\sum_{a=1}^3\sin(\lambda_a)\hat n^{(a)}\bigotimes \hat n^{(a)} expS=a=13(1+λa+2!1λa2+3!1λa3+...)n^(a)n^(a)=a=13expλan^(a)n^(a)ln(1+S)=a=13(λa21λa2+31λa3...)n^(a)n^(a)=a=13ln(1+λa)n^(a)n^(a)sin(S)=a=13(λa3!1λa3+5!1λa5+...)n^(a)n^(a)=a=13sin(λa)n^(a)n^(a)

其中 λ a \lambda_a λa n ^ ( a ) \hat n^{(a)} n^(a)是张量S的特征值和特征向量

各向同性的张量值张量函数

一个二阶张量值的张量函数, Π = Π ( T ) \Pi = \Pi(T) Π=Π(T),如果经过正交变换满足以下条件,则是各向同性的:
在这里插入图片描述
Π ( T ) \Pi(T) Π(T) T T T有相同的主向量,即 Π ( T ) \Pi(T) Π(T) T T T是同轴张量
为了证明这点我们可以先将张量T的分量表示成主空间下的分量:
在这里插入图片描述
那么由张量T的主不变量构成的张量函数表示为: Π = Π ( λ 1 , λ 2 , λ 3 ) \Pi = \Pi(\lambda_1, \lambda_2, \lambda_3) Π=Π(λ1,λ2,λ3),以及张量T的变换是:
T ∗ = Q ⋅ T ⋅ Q T T^* = Q \cdot T \cdot Q^T T=QTQT
同样地,对于张量函数 Π \Pi Π的变换,有:
Π ∗ ( T ) = Q ⋅ Π ( T ) ⋅ Q T \Pi^*(T) = Q \cdot \Pi(T) \cdot Q^T Π(T)=QΠ(T)QT

假设取正交张量分量为:
在这里插入图片描述
那么,计算得到:
在这里插入图片描述
其中,为了满足 Π ∗ = Π \Pi^*=\Pi Π=Π(各向同性),必须 Π 12 = Π 13 = Π 23 = 0 \Pi_{12}=\Pi_{13}=\Pi_{23}=0 Π12=Π13=Π23=0,因此, Π ( T ) \Pi(T) Π(T) T T T有相同的主向量

并且我们可以观察到,一个张量函数当且仅当表示成以下线性变换,才是各向同性的:
Π = Π ( T ) = Φ 0 1 + Φ 1 T + Φ 2 T 2 \Pi = \Pi(T) = \Phi_01+\Phi_1T+\Phi_2T^2 Π=Π(T)=Φ01+Φ1T+Φ2T2
其中, Φ 0 , Φ 1 , Φ 2 \Phi_0, \Phi_1, \Phi_2 Φ0,Φ1,Φ2是张量T的不变量或T的特征值。

以下是简单证明。
考虑T和 Π \Pi Π的谱表示,分别是:
T = ∑ a = 1 3 λ a n ^ ( a ) ⨂ n ^ ( a ) = λ 1 n ^ ( 1 ) ⨂ n ^ ( 1 ) + λ 2 n ^ ( 2 ) ⨂ n ^ ( 2 ) + λ 3 n ^ ( 3 ) ⨂ n ^ ( 3 ) T = \sum_{a=1}^3\lambda_a \hat n^{(a)}\bigotimes \hat n^{(a)} = \lambda_1 \hat n^{(1)}\bigotimes \hat n^{(1)}+ \lambda_2 \hat n^{(2)}\bigotimes \hat n^{(2)}+ \lambda_3 \hat n^{(3)}\bigotimes \hat n^{(3)} T=a=13λan^(a)n^(a)=λ1n^(1)n^(1)+λ2n^(2)n^(2)+λ3n^(3)n^(3)

Π = ∑ a = 1 3 ω a n ^ ( a ) ⨂ n ^ ( a ) = ω 1 n ^ ( 1 ) ⨂ n ^ ( 1 ) + ω 2 n ^ ( 2 ) ⨂ n ^ ( 2 ) + ω 3 n ^ ( 3 ) ⨂ n ^ ( 3 ) \Pi = \sum_{a=1}^3\omega_a \hat n^{(a)}\bigotimes \hat n^{(a)} = \omega_1 \hat n^{(1)}\bigotimes \hat n^{(1)}+ \omega_2 \hat n^{(2)}\bigotimes \hat n^{(2)}+ \omega_3 \hat n^{(3)}\bigotimes \hat n^{(3)} Π=a=13ωan^(a)n^(a)=ω1n^(1)n^(1)+ω2n^(2)n^(2)+ω3n^(3)n^(3)

有相同的主方向 n ^ ( i ) \hat n^{(i)} n^(i),那么可以将以下张量表示成:
在这里插入图片描述
求解以上方程组,并且定义 n ^ ( a ) ⨂ n ^ ( a ) ≡ M ( a ) \hat n^{(a)}\bigotimes \hat n^{(a)} \equiv M^{(a)} n^(a)n^(a)M(a),可以得到 M ( a ) M^{(a)} M(a)表示成T的函数:
在这里插入图片描述
将这个解代入到
在这里插入图片描述
分别得到:
T = T Π = Π ( T ) = Φ 0 1 + Φ 1 T + Φ 2 T 2 T = T \\ \Pi = \Pi(T) = \Phi_01+\Phi_1T +\Phi_2T^2 T=TΠ=Π(T)=Φ01+Φ1T+Φ2T2
其中, Φ 0 , Φ 1 , Φ 2 \Phi_0, \Phi_1, \Phi_2 Φ0,Φ1,Φ2分别是T的特征值的函数,为:
在这里插入图片描述
同样地,我们可以证明如果给定了一个张量函数 Π ( T ) \Pi(T) Π(T),那么这个张量函数是各向同性的,如果:
在这里插入图片描述

张量值张量函数的导数

先考虑一个标量值的张量函数:
Π = Π ( A ) \Pi=\Pi(A) Π=Π(A)
Π ( A ) \Pi(A) Π(A)关于 A A A的偏微分是:
∂ Π ∂ A = Π , A = ∂ Π ∂ A i j ( e ^ i ⨂ e ^ j ) \frac{\partial \Pi}{\partial A}=\Pi_{,A}=\frac{\partial \Pi}{\partial A_{ij}}(\hat e_i\bigotimes \hat e_j) AΠ=Π,A=AijΠ(e^ie^j)

Π ( A ) \Pi(A) Π(A)的二阶微分是一个四阶张量:
∂ 2 Π ∂ A ⨂ ∂ A = Π i , A A = ∂ 2 Π ∂ A i j ∂ A k l ( e ^ i ⨂ e ^ j ⨂ e ^ k ⨂ e ^ l ) = D i j k l ( e ^ i ⨂ e ^ j ⨂ e ^ k ⨂ e ^ l ) \frac{\partial^2 \Pi}{\partial A \bigotimes \partial A}=\Pi_{i,AA}=\frac{\partial^2\Pi}{\partial A_{ij} \partial A_{kl}}(\hat e_i\bigotimes \hat e_j\bigotimes \hat e_k \bigotimes \hat e_l)=D_{ijkl}(\hat e_i\bigotimes \hat e_j\bigotimes \hat e_k \bigotimes \hat e_l) AA2Π=Πi,AA=AijAkl2Π(e^ie^je^ke^l)=Dijkl(e^ie^je^ke^l)

C C C和b是正定对称二阶张量:
C = F T ⋅ F ; b = F ⋅ F T C = F^T \cdot F; \quad b = F \cdot F^T C=FTF;b=FFT

其中F是任意的二阶张量,且 det ⁡ F > 0 \det F >0 detF>0,我们必须牢记的是,有一个标量值的各向同性张量函数 Φ = Φ ( I C , I I C , I I I C ) \Phi=\Phi(I_C, II_C, III_C) Φ=Φ(IC,IIC,IIIC),表示成C的主不变量,其中 I C = I b , I I C = I I b , I I I C = I I I b I_C = I_b, II_C=II_b, III_C=III_b IC=Ib,IIC=IIb,IIIC=IIIb
接下来,我们求出 Φ \Phi Φ关于C和b的偏导数,我们先需要验证以下关系:
F ⋅ Φ , C ⋅ F T = Φ , b ⋅ b F \cdot \Phi_{,C}\cdot F^T=\Phi_{,b}\cdot b FΦ,CFT=Φ,bb
那么,通过应用导数的链式法则,我们可以得到:

Φ , C = ∂ Φ ( I C , I I C , I I I C ) ∂ C = ∂ Φ ∂ I C ∂ I C ∂ C + ∂ Φ ∂ I I C ∂ I I C ∂ C + ∂ Φ ∂ I I I C ∂ I I I C ∂ C \Phi_{,C} =\frac{\partial \Phi(I_C, II_C, III_C)}{\partial C}=\frac{\partial\Phi}{\partial I_C}\frac{\partial I_C}{\partial C} +\frac{\partial\Phi}{\partial II_C}\frac{\partial II_C}{\partial C} +\frac{\partial\Phi}{\partial III_C}\frac{\partial III_C}{\partial C} Φ,C=CΦ(IC,IIC,IIIC)=ICΦCIC+IICΦCIIC+IIICΦCIIIC

考虑主不变量的偏导数,有:
在这里插入图片描述
将以上式子代入到 Φ , C \Phi_{,C} Φ,C里面,得到:
Φ , C = ∂ Φ ∂ I C 1 + ∂ Φ ∂ I I C ( I C 1 − C ) + ∂ Φ ∂ I I I C ( I I I C C − 1 ) \Phi_{,C} =\frac{\partial \Phi}{\partial I_C}1+\frac{\partial\Phi}{\partial II_C}(I_C1-C) +\frac{\partial\Phi}{\partial III_C}(III_CC^{-1}) Φ,C=ICΦ1+IICΦ(IC1C)+IIICΦ(IIICC1)

整理一下:
Φ , C = ( ∂ Φ ∂ I C + ∂ Φ ∂ I I C I C ) 1 − ( ∂ Φ ∂ I I C ) C + ( ∂ Φ ∂ I I I C I I I C ) C − 1 \boxed{\Phi_{,C} =(\frac{\partial \Phi}{\partial I_C }+\frac{\partial\Phi}{\partial II_C}I_C)1-(\frac{\partial\Phi}{\partial II_C})C +(\frac{\partial\Phi}{\partial III_C}III_C)C^{-1}} Φ,C=(ICΦ+IICΦIC)1(IICΦ)C+(IIICΦIIIC)C1

另一种表达形式:
∂ I C ∂ C = 1 , ∂ I I C ∂ C = I C 1 − C , ∂ I I I C ∂ C = C 2 − I C C + I I C 1 \frac{\partial I_C}{\partial C}=1, \quad \frac{\partial II_C}{\partial C}=I_C1-C, \quad \frac{\partial III_C}{\partial C}=C^2-I_CC+II_C1 CIC=1,CIIC=IC1C,CIIIC=C2ICC+IIC1代入到
Φ , C = ∂ Φ ( I C , I I C , I I I C ) ∂ C = ∂ Φ ∂ I C ∂ I C ∂ C + ∂ Φ ∂ I I C ∂ I I C ∂ C + ∂ Φ ∂ I I I C ∂ I I I C ∂ C \Phi_{,C} =\frac{\partial \Phi(I_C, II_C, III_C)}{\partial C}=\frac{\partial\Phi}{\partial I_C}\frac{\partial I_C}{\partial C} +\frac{\partial\Phi}{\partial II_C}\frac{\partial II_C}{\partial C} +\frac{\partial\Phi}{\partial III_C}\frac{\partial III_C}{\partial C} Φ,C=CΦ(IC,IIC,IIIC)=ICΦCIC+IICΦCIIC+IIICΦCIIIC
我们可以得到:
Φ , C = ( ∂ Φ ∂ I C + ∂ Φ ∂ I I C I C + ∂ Φ ∂ I I I C I I C ) 1 − ( ∂ Φ ∂ I I C + ∂ Φ ∂ I I I C I C ) C + ( ∂ Φ ∂ I I I C ) C 2 \boxed{\Phi_{,C} =(\frac{\partial \Phi}{\partial I_C }+\frac{\partial\Phi}{\partial II_C}I_C+\frac{\partial \Phi}{\partial III_C}II_C)1-(\frac{\partial\Phi}{\partial II_C}+\frac{\partial \Phi}{\partial III_C}I_C)C +(\frac{\partial\Phi}{\partial III_C})C^{2}} Φ,C=(ICΦ+IICΦIC+IIICΦIIC)1(IICΦ+IIICΦIC)C+(IIICΦ)C2

如果我们再次将 ∂ I C ∂ C = 1 , ∂ I I C ∂ C = I I C C − 1 − I I I C C − 2 , ∂ I I I C ∂ C = I I I C C − 1 \frac{\partial I_C}{\partial C}=1, \quad \frac{\partial II_C}{\partial C}=II_C C^{-1}-III_C C^{-2}, \quad \frac{\partial III_C}{\partial C}=III_C C^{-1} CIC=1,CIIC=IICC1IIICC2,CIIIC=IIICC1

可以得到:
Φ , C = ( ∂ Φ ∂ I C ) 1 + ( ∂ Φ ∂ I I C I I C + ∂ Φ ∂ I I I C I I I C ) C − 1 − ( ∂ Φ ∂ I I C I I I C ) C − 2 \boxed{\Phi_{,C} =(\frac{\partial \Phi}{\partial I_C })1+(\frac{\partial\Phi}{\partial II_C}II_C+\frac{\partial\Phi}{\partial III_C}III_C)C^{-1}-(\frac{\partial\Phi}{\partial II_C}III_C )C^{-2}} Φ,C=(ICΦ)1+(IICΦIIC+IIICΦIIIC)C1(IICΦIIIC)C2

如果有 I C = I b , I I C = I I b , I I I C = I I I b I_C = I_b, II_C = II_b, III_C = III_b IC=Ib,IIC=IIb,IIIC=IIIb,则有:
Φ , b = ( ∂ Φ ∂ I b + ∂ Φ ∂ I I b I b ) 1 − ∂ Φ ∂ I I b b + ∂ Φ ∂ I I I b I I I b b − 1 \boxed{\Phi_{,b}=(\frac{\partial \Phi}{\partial I_b}+\frac{\partial \Phi}{\partial II_b}I_b)1-\frac{\partial \Phi}{\partial II_b}b+\frac{\partial \Phi}{\partial III_b}III_b b^{-1}} Φ,b=(IbΦ+IIbΦIb)1IIbΦb+IIIbΦIIIbb1

利用
Φ , C = ( ∂ Φ ∂ I C + ∂ Φ ∂ I I C I C ) 1 − ( ∂ Φ ∂ I I C ) C + ( ∂ Φ ∂ I I I C I I I C ) C − 1 \boxed{\Phi_{,C} =(\frac{\partial \Phi}{\partial I_C }+\frac{\partial\Phi}{\partial II_C}I_C)1-(\frac{\partial\Phi}{\partial II_C})C +(\frac{\partial\Phi}{\partial III_C}III_C)C^{-1}} Φ,C=(ICΦ+IICΦIC)1(IICΦ)C+(IIICΦIIIC)C1
可以得到:
F ⋅ Φ , C ⋅ F T = ( ∂ Φ ∂ I C + ∂ Φ ∂ I I C I C ) F ⋅ 1 ⋅ F T − ∂ Φ ∂ I I C F ⋅ C ⋅ F T + ∂ Φ ∂ I I I C I I I C F ⋅ C − 1 ⋅ F T F \cdot \Phi_{,C}\cdot F^T = (\frac{\partial \Phi}{\partial I_C}+\frac{\partial \Phi}{\partial II_C}I_C)F\cdot 1\cdot F^T-\frac{\partial \Phi}{\partial II_C}F\cdot C \cdot F^T+\frac{\partial \Phi}{\partial III_C}III_CF \cdot C^{-1} \cdot F^T FΦ,CFT=(ICΦ+IICΦIC)F1FTIICΦFCFT+IIICΦIIICFC1FT

然后,我们可以观察到:
在这里插入图片描述
所以, F ⋅ Φ , C ⋅ F T F \cdot \Phi_{,C} \cdot F^T FΦ,CFT可以重写成:
在这里插入图片描述
根据 Φ , b = ( ∂ Φ ∂ I b + ∂ Φ ∂ I I b I b ) 1 − ∂ Φ ∂ I I b b + ∂ Φ ∂ I I I b I I I b b − 1 \boxed{\Phi_{,b}=(\frac{\partial \Phi}{\partial I_b}+\frac{\partial \Phi}{\partial II_b}I_b)1-\frac{\partial \Phi}{\partial II_b}b+\frac{\partial \Phi}{\partial III_b}III_b b^{-1}} Φ,b=(IbΦ+IIbΦIb)1IIbΦb+IIIbΦIIIbb1 和上式,可以得到:
在这里插入图片描述
这表示, Φ , C \Phi_{,C} Φ,C和b是同轴张量

再次,根据 C = F T ⋅ F C = F^T \cdot F C=FTF,计算标量值张量函数 Φ = Φ ( C ) \Phi = \Phi(C) Φ=Φ(C)的关于张量F的导数:
在这里插入图片描述
张量C关于F的导数如下所示:
在这里插入图片描述
将以上的张量C关于F的导数代入到张量函数 Φ ( C ) \Phi(C) Φ(C)关于张量F的导数表达式中:在这里插入图片描述由于C的对称性, C i j = C j i C_{ij} = C_{ji} Cij=Cji,可以得到:
在这里插入图片描述
现在,假设C由对称二阶张量U给出, C = U T ⋅ U = U ⋅ U = U 2 C = U^T\cdot U=U \cdot U=U^2 C=UTU=UU=U2,那么 Φ , C \Phi_{,C} Φ,C为:
Φ , C = 2 Φ , C ⋅ U = 2 U ⋅ Φ , C \Phi_{,C} = 2\Phi_{,C}\cdot U=2U\cdot \Phi_{,C} Φ,C=2Φ,CU=2UΦ,C
因此,可以说 Φ , C \Phi_{,C} Φ,C和U是同轴张量

令A是对称二阶张量, Φ = Φ ( A ) \Phi = \Phi(A) Φ=Φ(A)是一个标量值张量函数,那么一下关系成立:
在这里插入图片描述
参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值