文献速递:肿瘤分割---- ALA-Net:用于3D结直肠肿瘤分割的自适应病变感知注意力网络

文献速递:肿瘤分割---- ALA-Net:用于3D结直肠肿瘤分割的自适应病变感知注意力网络

01

文献速递介绍

结直肠癌(CRC)在全球范围内与高发病率和死亡率相关,。肿瘤的预后高度依赖于诊断时疾病的阶段。准确检测和分割肿瘤及其周围的结直肠组织对于促进病理分期的预测和指导适当治疗至关重要。在临床常规中,癌变区域是在磁共振(MR)图像上手动识别和描绘的。然而,在大量MR图像上进行手动标记和描绘是一项繁琐、易出错且依赖操作者的任务。因此,开发一种准确和自动的结直肠肿瘤分割技术是非常必要的。尽管以前对这一主题进行了大量研究,但这项任务仍然困难,原因在于对比度差、各向异性空间分辨率、强度不均匀、缺乏先验信息和类别不平衡等因素。此外,结直肠肿瘤具有特征性的模糊边界,并在形状、大小和结构上表现出显著变化,这进一步增加了它们完全自动分割的难度。基于信心连接区域生长算法或超体素聚类的传统结直肠肿瘤分割方法在需要精确肿瘤边界的情况下是不足够的。这些算法容易受到噪声的影响,通常需要手动干预。目前,深度卷积神经网络(DCNNs)在医学图像分割任务中取得了显著成功。这是因为它们能够直接从数据中学习逐渐复杂的特征表示层次。然而,重复组合的池化和下采样层,使模型获得对空间变换的不变性,本质上导致了细节和位置信息的丢失,从而限制了定位的准确性。

Title

题目

ALA-Net: Adaptive Lesion-Aware Attention Network for 3D Colorectal Tumor Segmentation

ALA-Net:用于3D结直肠肿瘤分割的自适应病变感知注意力网络

Abstract

摘要

Accurate and reliable segmentation of colorectal tumors and surrounding colorectal tissues on 3D magnetic resonance images has critical importance in preoperative prediction, staging, and radiotherapy. Previous works simply combine multilevel features without aggregating representative semantic information and without compensating for the loss of spatial information caused by down-sampling. Therefore, they are vulnerable to noise from complex backgrounds and suffer from misclassification and target incompleteness-related failures. In this paper, we address these limitations with a novel adaptive lesion-aware attention network (ALA-Net) which explicitly integrates useful contextual information with spatial details and captures richer feature dependencies based on 3D attention mechanisms. The model comprises two parallel encoding paths. One of these is designed to explore global contextual features and enlarge the receptive field using a recurrent strategy. The other captures sharper object boundaries and the details of small objects that are lost in repeated down-sampling layers. Our lesion-aware attention module adaptively captures long-range semantic dependencies and highlights the most discriminative features, improving semantic consistency and completeness. Furthermore, we introduce a prediction aggregation module to combine multiscale feature maps and to further filter out irrelevant information for precise voxel-wise prediction.

精确可靠地在3D磁共振图像上分割结直肠肿瘤及其周围结直肠组织对于术前预测、分期和放疗至关重要。之前的研究仅简单地结合多层次特征,没有聚合有代表性的语义信息,也没有补偿下采样造成的空间信息损失。因此,它们容易受到复杂背景噪声的影响,并遭受误分类和目标不完整性相关的失败。在本文中,我们通过一个新颖的自适应病变感知注意力网络(ALA-Net)来解决这些限制,该网络明确地将有用的上下文信息与空间细节整合,并基于3D注意力机制捕获更丰富的特征依赖性。该模型包括两个并行的编码路径。其中一个旨在通过循环策略探索全局上下文特征并扩大感受野。另一个捕获更清晰的对象边界和在重复下采样层中丢失的小对象细节。我们的病变感知注意力模块能够自适应地捕获长范围语义依赖性,并突出最具辨别性的特征,提高语义一致性和完整性。此外,我们引入了一个预测聚合模块,用于组合多尺度特征图,并进一步过滤掉不相关信息,以实现精确的体素级预测。

Methods

方法

The architectur

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值