导语:由于推荐系统冷启动问题的存在,在视频推荐中为用户推荐新视频是一个极具挑战的问题,新视频推荐的效果直接影响推荐系统“新陈代谢”的稳定性和内容生态的健康发展。为了解决该问题,本文主要介绍了爱奇艺随刻推荐团队在短视频推荐业务上基于对抗神经网络(GAN)的新视频冷启动的落地实践方案。
01
背景
推荐系统的冷启动问题是指当新物品或新用户进入推荐系统后,由于没有该用户或该物品的历史信息,推荐很难取得较好的效果的问题,这一问题很容易影响新用户的使用体验和用户留存,是短视频个性化推荐领域一个重要的问题。
要解决这个问题,我们首先要了解下,推荐系统的冷启动由哪些部分组成。
推荐系统的冷启动主要可以分为用户冷启动、物品冷启动和系统冷启动三类。
以用户-物品评分矩阵为例,如下图所示,在用户-物品评分二维矩阵中,用户和物品分别有冷热之分,进而形成四象限,第一象限即为物品冷启动问题。
新视频推荐在视频推荐系统中是一种典型的物品冷启动问题,对于爱奇艺在线视频服务平台,每时每刻会有大量新视频生产和上线,尤其是以UGC、PUGC为代表的短视频,同时短视频又具有快速消费和一次性消费的特征,使得新视频如何快速地准确地高效地分发给感兴趣的用户成为一个持续的研究问题。
从新视频的内容属性看,新视频相较于老视频,视频历史信息缺失,没有用户视频交互行为数据,同时视频meta属性可能有缺失或者不准确,如何准确地描述和表达新视频是第一性问题。
从新视频分发路径和周期看,新视频分发会经历少量试探性或验证性分发,通过系统验证后进入大量的自由分发阶段,如何优化新视频分发路径、如何使新视频高效触达目标靶用户是视频和用户如何建立连接的问题。
从视频推荐系统整体看,新视频推荐是推荐系统物料正常的“新陈代谢”,由于短视频具有快速消费的特征,视频推荐系统整体的物料更新速度较快,如何稳定地进行“推陈出新”是推荐系统的“开源问题”;同时新视频meta属性缺失或者不准确、推荐分发试探和验证会给推荐系统整体带来一定的开销和引入一些噪声,如何准确高效进行新视频推荐是推荐系统的效率问题。
从新视频生产供给侧看,新视频推荐分发的效果,会对视频生产创作进行前期直接的反馈,对视频生产创作者的研判决策有一定的影响,对于内容生态的健康发展具有引导和指标性作用。
因此,新视频推荐对推荐系统至关重要,如何有效地构建新视频推荐,根据第一性原则分析,需要解决两个基本问题,第一是如何表示新