矩阵分析 (六) 矩阵的函数

矩阵分析系统学习笔记

本系列所有文章来自东北大学韩志涛老师的矩阵分析课程学习笔记,系列如下:
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (二) 内积空间
矩阵分析 (三) 矩阵的标准形
矩阵分析 (四)向量和矩阵的范数
矩阵分析 (五) 矩阵的分解
矩阵分析 (六) 矩阵的函数
矩阵分析 (七) 矩阵特征值的估计
矩阵分析 (八) 矩阵的直积

矩阵的微分和积分

  定义:以变量 t t t的函数为元素的矩阵 A ( t ) = ( a i j ( t ) ) m × n A(t)=(a_{ij}(t))_{m \times n} A(t)=(aij(t))m×n称为函数矩阵,这里 a i j ( t ) a_{ij}(t) aij(t) t t t的函数。当 a i j ( t ) a_{ij}(t) aij(t)都可微时,规定导数为:

A ′ ( t ) = ( a i j ′ ( t ) ) m × n A^{'}(t)=(a_{ij}^{'}(t))_{m \times n} A(t)=(aij(t))m×n

或:

d A ( t ) d t = ( d d t a i j ( t ) ) m × n \frac{dA(t)}{dt}=(\frac{d}{dt}a_{ij}(t))_{m \times n} dtdA(t)=(dtdaij(t))m×n

  而当 a i j a_{ij} aij ( a , b ) (a,b) (a,b)上可积时,规定 A A A的积分为:

∫ a b A ( t ) d t = ( ∫ a b a i j ( t ) d t ) m × n \int^{b}_{a}A(t)dt=(\int_{a}^{b}a_{ij}(t)dt)_{m \times n} abA(t)dt=(abaij(t)dt)m×n

求导法则

  设 A ( t ) A(t) A(t) B ( t ) B(t) B(t)是适当阶数的可微矩阵时, λ ( t ) \lambda(t) λ(t)是可微函数。

  1. ( A + B ) ′ = A ′ + B ′ (A+B)^{'}=A^{'}+B^{'} (A+B)=A+B;

  2. ( λ A ) ′ = λ ′ A + λ A ′ (\lambda A)^{'}=\lambda^{'}A+\lambda A^{'} (λA)=λA+λA

  3. ( A ⋅ B ) ′ = A ′ B + A B ′ (A \cdot B)^{'}=A^{'}B+A B^{'} (AB)=AB+AB

  4. u = f ( t ) u=f(t) u=f(t)关于 t t t可微时: d A ( u ) d t = d A ( u ) d u ⋅ d u d t \frac{dA(u)}{dt}=\frac{dA(u)}{du}\cdot\frac{du}{dt} dtdA(u)=dudA(u)dtdu;

  5. A − 1 ( t ) A^{-1}(t) A1(t)可微时, ( A − 1 ( t ) ) ′ = − A − 1 ( t ) A ′ ( t ) A − 1 ( t ) (A^{-1}(t))^{'}=-A^{-1}(t)A^{'}(t)A^{-1}(t) (A1(t))=A1(t)A(t)A1(t)

  第五个等式的证明如下:

0 = I ′ = ( X X − 1 ) ′ = X ′ X − 1 + X ( X − 1 ) ′ 0=I^{\prime}=\left(X X^{-1}\right)^{\prime}=X^{\prime} X^{-1}+X\left(X^{-1}\right)^{\prime} 0=I=(XX1)=XX1+X(X1)

⇒ ( X − 1 ) ′ = − X − 1 X ′ X − 1 \Rightarrow\left(X^{-1}\right)^{\prime}=-X^{-1} X^{\prime} X^{-1} (X1)=X1XX1

  • 例题8:设 F = A X F=AX F=AX, A = ( a i j ) m × n A=(a_{ij})_{m \times n} A=(aij)m×n X = ( x 1 , x 2 , ⋯ , x n ) T X=(x_{1},x_{2},\cdots ,x_{n})^{T} X=(x1x2xn)T d F d X T \frac{dF}{dX^{T}} dXTdF

  
d F d X T = A \frac{dF}{dX^{T}}=A dXTdF=A

  • 例题9:设 f = X T Y f=X^{T}Y f=XTY X = ( x 1 , x 2 , ⋯   , x n ) T , Y = ( y 1 , y 2 , ⋯   , y n ) T X=(x_{1},x_{2},\cdots ,x_{n})^{T},Y=(y_{1},y_{2},\cdots ,y_{n})^{T} X=(x1x2,xn)TY=(y1y2,yn)T,求 d f d X \frac{df}{dX} dXdf y i y_{i} yi X X X的函数)。

  

d F d X = d X T d X Y + d Y T d X ⋅ X \frac{dF}{dX}=\frac{dX^{T}}{dX}Y+\frac{dY^{T}}{dX}\cdot X dXdF=dXdXTY+dXdYTX

  最小二乘解也可以通过这种方式求出,对误差的平方求导数即可得到。

矩阵序列及矩阵级数

定义:设有 C n × n C^{n \times n} Cn×n的矩阵序列 { A ( k ) } \{A^{(k)}\} {A(k)},其中:
A k = ( a i j k ) m × n A^{k}=(a_{ij}^{k})_{m \times n} Ak=(aijk)m×n
  若有:
l i m k → ∞ a i j k = a i j lim_{k \rightarrow \infty}a_{ij}^{k}=a_{ij} limkaijk=aij
  则称矩阵序列 A k A^{k} Ak收敛于 A A A, A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n { A ( k ) } \{A(k)\} {A(k)}的极限,记为:
l i m k → ∞ A ( k ) = A 或 A k → A lim_{k \rightarrow \infty}A^{(k)}=A或A^{k} \rightarrow A limkA(k)=AAkA
  不收敛的序列称之为发散序列。

  • 定理6.1:设 A k A^{k} Ak, A ∈ C n × n A \in C^{n \times n} ACn×n,则 l i m k → ∞ A k = A lim_{k \rightarrow \infty}A^{k}=A limkAk=A的充要条件是:
    l i m k → ∞ ∣ ∣ A k − A ∣ ∣ = 0 , lim_{k \rightarrow \infty}||A^{k}-A||=0, limk∣∣AkA∣∣=0,

  其中 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ C n × n C^{n \times n} Cn×n上的任何一个范数。

  • 定理6.2:设:

A k → A , B k → B , A^{k} \rightarrow A,B^{k} \rightarrow B, AkA,BkB,

  其中:

A k , B k , A , B A^{k},B^{k},A,B Ak,Bk,A,B

  是适当阶段的矩阵, a , b a,b a,b ∈ \in C C C是常数,则:

  1. a A k + b B k → a A + b B aA^{k}+bB^{k} \rightarrow aA+bB aAk+bBkaA+bB

  2. A k ⋅ B k → A B A^{k} \cdot B^{k} \rightarrow AB AkBkAB

  • 定义6.5:设 A ∈ C n × n A\in C^{n \times n} ACn×n,若 l i m k → ∞ A k = 0 lim_{k \rightarrow \infty}A^{k}=0 limkAk=0,则称 A A A为收敛矩阵,这里 A k A^{k} Ak A A A k k k次方。

  • 定理6.3 :设 A ∈ C n × n A \in C^{n \times n} ACn×n,则 A A A为收敛矩阵的充要条件是 ρ < 1 \rho < 1 ρ<1

矩阵的级数

  • 定义6.6:由 C n × n C^{n \times n} Cn×n的矩阵序列 { A ( k ) } \{A^{(k)}\} {A(k)}构成的无穷级数:
    A ( 0 ) + A ( 1 ) + ⋯ + A ( k ) + ⋯ A^{(0)}+A^{(1)}+\cdots + A^{(k)}+\cdots A(0)+A(1)++A(k)+

  称为矩阵级数,记为 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty}A^{(k)} k=0+A(k)。对任一正整数 N N N,称 S N = ∑ k = 0 N A k S^{N}=\sum_{k=0}^{N}A^{k} SN=k=0NAk为矩阵级数的部分和,如果由部分和构成的矩阵序列 { S N } \{S^{N}\} {SN}收敛,且有极限,即:

l i m N → ∞ S N = S lim_{N \rightarrow \infty}S^{N}=S limNSN=S

  则称矩阵级数 ∑ k = 0 + ∞ A k \sum_{k=0}^{+\infty}A^{k} k=0+Ak收敛,而且有和 S S S,记为:

S = ∑ k = 0 + ∞ A k S=\sum_{k=0}^{+\infty} A^{k} S=k=0+Ak

  • 定义6.7:设 A ( k ) = ( a i j k ) n × n A^{(k)}=(a_{ij}^{k})_{n \times n} A(k)=(aijk)n×n,如果 n 2 n^{2} n2个数量级数:

∑ k = 0 + ∞ a i j k \sum_{k=0}^{+ \infty}a_{ij}^{k} k=0+aijk

  都绝对收敛,即:

∑ k = 0 + ∞ ∣ a i j k ∣ \sum_{k=0}^{+ \infty}|a_{ij}^{k}| k=0+aijk

  收敛,则称级数 ∑ k = 0 + ∞ A k \sum_{k=0}^{+ \infty}A^{k} k=0+Ak绝对收敛

  • 定理6.4:设 A k = ( a i j ( k ) ) n × n A^{k}=(a_{ij}^{(k)})_{n \times n} Ak=(aij(k))n×n,则矩阵级数 ∑ k = 0 + ∞ A k \sum_{k=0}^{+ \infty}A^{k} k=0+Ak绝对收敛的充要条件是 ∑ k = 0 + ∞ ∣ ∣ A k ∣ ∣ \sum_{k=0}^{+ \infty}||A^{k}|| k=0+∣∣Ak∣∣收敛,其中 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ C n × n C^{n \times n} Cn×n上的任一矩阵范数。

矩阵的幂级数

  • 定义6.8: 设 A ∈ C n × n A \in C^{n \times n} ACn×n, a k ∈ C ( k = 0 , 1 , 2 , ⋯   ) a_{k} \in C(k=0,1,2,\cdots) akC(k=0,1,2,),称矩阵级数:

∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty}a_{k}A^{k} k=0+akAk

  为矩阵 A A A的幂级数。

  利用定义来判断矩阵幂级数的敛散性,需要判别 n 2 n^{2} n2个数项级数的敛散性,当矩阵的阶数较大时,这很不方便,且在许多情况下也不必要。矩阵幂级数是复变量 z z z的幂级数的推广,如果 ∑ k = 0 ∞ a k z k \sum_{k=0}^{\infty}a_{k}z^{k} k=0akzk的收敛半径为 R R R,则对于收敛圆 ∣ z ∣ < R |z|< R z<R内的所有 z z z,都是绝对收敛,因此,讨论级数的收敛性问题,自然联系到 ∑ k = 0 ∞ a k z k \sum_{k=0}^{\infty}a_{k}z^{k} k=0akzk的收敛半径,关于矩阵幂级数有下面的结论:

  • 定理6.5:设 ∑ k = 0 ∞ a k z k \sum_{k=0}^{\infty}a_{k}z^{k} k=0akzk的收敛半径为 R R R A ∈ C n × n A \in C^{n \times n} ACn×n,则:
  1. ρ ( A ) < R \rho(A)< R ρ(A)<R时, ∑ k = 0 ∞ a k z k \sum_{k=0}^{\infty}a_{k}z^{k} k=0akzk绝对收敛;

  2. ρ ( A ) > R \rho(A)> R ρ(A)>R时, ∑ k = 0 ∞ a k z k \sum_{k=0}^{\infty}a_{k}z^{k} k=0akzk发散。

矩阵函数

  • 矩阵函数定义

  这里利用方阵的幂级数来定义矩阵函数:

  在复变函数中,一些函数可以表达成无穷级数的和,即函数可以展开:

e Z = ∑ n = 0 + ∞ z n n ! e^{Z}=\sum_{n=0}^{+\infty}\frac{z^{n}}{n!} eZ=n=0+n!zn

  利用这种展开可以定义矩阵函数:

e A = ∑ n = 0 + ∞ A n n ! e^{A}=\sum_{n=0}^{+\infty}\frac{A^{n}}{n!} eA=n=0+n!An

  称之为矩阵 A A A的指数函数,而相应的幂级数的收敛半径为无穷大,所以对任何矩阵都收敛。

  • 计算矩阵函数

  这里介绍计算矩阵函数的最小多项式的方法

  若 f ( λ ) f(\lambda) f(λ)是多项式, m ( λ ) m(\lambda) m(λ) A A A的最小多项式,它的次数为 m m m,以 m ( λ ) m(\lambda) m(λ)去除 f ( λ ) f(\lambda) f(λ)得:

f ( λ ) = m ( λ ) q ( λ ) + r ( λ ) f(\lambda)=m(\lambda)q(\lambda)+r(\lambda) f(λ)=m(λ)q(λ)+r(λ)

  这里 r ( λ ) = 0 r(\lambda)=0 r(λ)=0或者比 m ( λ ) m(\lambda) m(λ)的次数更低,因此:

f ( A ) = m ( A ) q ( A ) + r ( A ) = r ( A ) f(A)=m(A)q(A)+r(A)=r(A) f(A)=m(A)q(A)+r(A)=r(A)

  由此可见,次数高于 m m m次的任一多项式 f ( A ) f(A) f(A)都可以化为次数 ≤ m − 1 \leq m-1 m1 A A A的多项式 r ( A ) r(A) r(A)来计算,这一思想可以推广到由矩阵幂级数确定的矩阵函数 f ( A ) f(A) f(A)上,有如下定理:

  • 定理6.6:设 n n n阶矩阵 A A A的最小多项式为 m m m次多项式:

m ( λ ) = ( λ − λ 1 ) n 1 ( λ − λ 2 ) n 2 ⋯ ( λ − λ s ) n s m(\lambda)=(\lambda-\lambda_{1})^{n_{1}}(\lambda-\lambda_{2})^{n_{2}}\cdots(\lambda-\lambda_{s})^{n_{s}} m(λ)=(λλ1)n1(λλ2)n2(λλs)ns

  其中, λ 1 , λ 2 , ⋯   , λ s \lambda_{1},\lambda_{2},\cdots,\lambda_{s} λ1,λ2,,λs A A A的所有不同的特征值,与 f ( z ) = ∑ k = 0 + ∞ C k z k f(z)=\sum_{k=0}^{+\infty}C_{k}z^{k} f(z)=k=0+Ckzk相应的 f ( A ) = ∑ k = 0 ∞ C k A k f(A)=\sum_{k=0}^{\infty}C_{k}A^{k} f(A)=k=0CkAk A A A的幂级数,则:

f ( A ) = a 0 E + a 1 A + ⋯ + a m − 1 A m − 1 f(A)=a_{0}E+a_{1}A+\cdots +a_{m-1}A^{m-1} f(A)=a0E+a1A++am1Am1

  系数 a 0 , a 1 , ⋯   , a m − 1 a_{0},a_{1},\cdots,a_{m-1} a0,a1,,am1满足下列方程组:

a 0 + a i λ i + ⋯ + a m − 1 λ i m − 1 = f ( λ i ) a_{0}+a_{i}\lambda_{i}+\cdots +a_{m-1}\lambda_{i}^{m-1}=f(\lambda_{i}) a0+aiλi++am1λim1=f(λi)

a 1 + 2 a 2 λ i + ⋯ + ( m − 1 ) a m − 1 λ i m − 2 = f ′ ( λ i ) a_{1}+2a_{2}\lambda_{i}+\cdots+(m-1)a_{m-1}\lambda_{i}^{m-2}=f^{'}(\lambda_{i}) a1+2a2λi++(m1)am1λim2=f(λi)

( n i − 1 ) a n i − 1 + ⋯ + ( m − 1 ) ⋯ ( m − n i + 1 ) a m − 1 λ i m − n i + 1 = f ( n i − 1 ) ( λ i ) (n_{i}-1)a_{n_{i-1}}+\cdots+(m-1)\cdots(m-n_{i}+1)a_{m-1}\lambda_{i}^{m-n_{i}+1}=f^{(n_{i}-1)}(\lambda_{i}) (ni1)ani1++(m1)(mni+1)am1λimni+1=f(ni1)(λi)

  即:

f ( λ ) = a 0 + a 1 λ + ⋯ + a m − 1 λ m − 1 f(\lambda)=a_{0}+a_{1}\lambda+\cdots+a_{m-1}\lambda^{m-1} f(λ)=a0+a1λ++am1λm1

  求 n i − 1 n_{i}-1 ni1次导数,得到 n i n_{i} ni个子式,在这些式子中把 λ i \lambda_{i} λi代入。事实上,设:

f ( λ ) = m ( λ ) q ( λ ) + r ( λ ) f(\lambda)=m(\lambda)q(\lambda)+r(\lambda) f(λ)=m(λ)q(λ)+r(λ)

  两边求导

f ′ ( λ ) = m ′ ( λ ) q ( λ ) + m ( λ ) q ′ ( λ ) + r ′ ( λ ) f^{'}(\lambda)=m^{'}(\lambda)q(\lambda)+m(\lambda)q^{'}(\lambda)+r^{'}(\lambda) f(λ)=m(λ)q(λ)+m(λ)q(λ)+r(λ)

  而 m ( λ ) m(\lambda) m(λ) m ′ ( λ ) m^{'}(\lambda) m(λ) λ = λ i \lambda=\lambda_{i} λ=λi时为零,因为 m ( λ ) m(\lambda) m(λ)中有 ( λ − λ i ) n i (\lambda-\lambda_{i})^{n_{i}} (λλi)ni,所以可以求 n i − 1 n_{i}-1 ni1次导数,代入时只有 r n i − 1 ( λ i ) r^{n_{i}-1}(\lambda_{i}) rni1(λi)不是零。

  • 例16:设

A = ( 2 1 4 0 2 0 0 3 1 ) A=\left(\begin{array}{ccc} {2} & {1} & {4} \\ {0} & {2} & {0} \\ {0} & {3} & {1} \end{array}\right) A= 200123401

  

f ( λ ) = ( λ − 1 ) ( λ − 2 ) 2 f(\lambda)=(\lambda-1)(\lambda-2)^{2} f(λ)=(λ1)(λ2)2

  而 ( λ − 1 ) ( λ − 2 ) (\lambda-1)(\lambda-2) (λ1)(λ2)不是零化多项式,所以最小多项式是:

m ( λ ) = f ( λ ) m(\lambda)=f(\lambda) m(λ)=f(λ)

  设:

e A t = a 0 E + a 1 A + a 2 A 2 e^{At}=a_{0}E+a_{1}A+a_{2}A^{2} eAt=a0E+a1A+a2A2

  由

e λ t = a 0 + a 1 λ + a 2 λ 2 e^{\lambda t}=a_{0}+a_{1}\lambda+a_{2}\lambda^{2} eλt=a0+a1λ+a2λ2

  两边求导:

t e λ t = a 1 + 2 a 2 λ te^{\lambda t}=a_{1}+2a_{2}\lambda teλt=a1+2a2λ

  再带入特征值得

e t = a 0 + a 1 + a 2 e 2 t = a 0 + 2 a 1 + 4 a 2 t e 2 t = a 1 + 4 a 2 \begin{aligned} &\mathrm{e}^{t}=a_{0}+a_{1}+a_{2}\\ &\mathrm{e}^{2 t}=a_{0}+2 a_{1}+4 a_{2}\\ &t e^{2 t}=a_{1}+4 a_{2} \end{aligned} et=a0+a1+a2e2t=a0+2a1+4a2te2t=a1+4a2

  解出:

a 0 = 4 e t − 3 e 2 t + 2 t e 2 t a 1 = − 4 e 4 + 4 e 2 t − 3 t e 2 t a 2 = e t − e 2 t + t e 2 t \begin{aligned} &a_{0}=4 \mathrm{e}^{t}-3 \mathrm{e}^{2 t}+2 t \mathrm{e}^{2 t}\\ &a_{1}=-4 \mathrm{e}^{4}+4 \mathrm{e}^{2 t}-3 t \mathrm{e}^{2 t}\\ &a_{2}=\mathrm{e}^{t}-\mathrm{e}^{2 t}+t \mathrm{e}^{2 t} \end{aligned} a0=4et3e2t+2te2ta1=4e4+4e2t3te2ta2=ete2t+te2t

  代入得:

e A t = e 2 t ( 1 12 e − t − 12 + 13 t − 4 e − t + 4 0 1 0 0 − 3 e − t + 3 e − t ) \mathrm{e}^{A t}=\mathrm{e}^{2 t}\left(\begin{array}{ccc} {1} & {12 \mathrm{e}^{-t}-12+13 t} & {-4 \mathrm{e}^{-t}+4} \\ {0} & {1} & {0} \\ {0} & {-3 \mathrm{e}^{-t}+3} & {\mathrm{e}^{-t}} \end{array}\right) eAt=e2t 10012et12+13t13et+34et+40et

矩阵函数的性质

  这里讨论一下矩阵函数的一些性质:

  1. s i n ( − A ) = − s i n ( A ) sin(-A)=-sin(A) sin(A)=sin(A) c o s ( − A ) = c o s ( A ) cos(-A)=cos(A) cos(A)=cos(A)

  2. A , B ∈ C n × n A,B \in C^{n\times n} A,BCn×n,当 A B = B A AB=BA AB=BA 时, e A + B = e A ⋅ B B = e B ⋅ B A e^{A+B}=e^{A} \cdot B^{B}=e^{B} \cdot B^{A} eA+B=eABB=eBBA

  3. 由欧拉公式容易得到:

e i A = c o s ( A ) + i s i n ( A ) e^{iA}=cos(A)+isin(A) eiA=cos(A)+isin(A)

c o s ( A ) = 1 2 ( e i A + e − i A ) cos(A)=\frac{1}{2}(e^{iA}+e^{-iA}) cos(A)=21(eiA+eiA)

s i n ( A ) = 1 2 i ( e i A − e − i A ) sin(A)=\frac{1}{2i}(e^{iA}-e^{-iA}) sin(A)=2i1(eiAeiA)

  1. 利用上面的公式容易得到,当 A B = B A AB=BA AB=BA时:

s i n ( A + B ) = s i n ( A ) c o s ( B ) + c o s ( A ) s i n ( B ) sin(A+B)=sin(A)cos(B)+cos(A)sin(B) sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

c o s ( A + B ) = c o s ( A ) c o s ( B ) − s i n ( A ) s i n ( B ) cos(A+B)=cos(A)cos(B)-sin(A)sin(B) cos(A+B)=cos(A)cos(B)sin(A)sin(B)

矩阵函数在微分方程组中的应用

  考虑一阶常系数非齐次方程组:

{ d X d t = A X + F ( t ) X ∣ t = t 0 = X ( t 0 ) \left\{\begin{array}{l} {\frac{\mathrm{d} X}{\mathrm{d} t}=A X+F(t)} \\ {\left.X\right|_{t=t_{0}}=X\left(t_{0}\right)} \end{array}\right. {dtdX=AX+F(t)Xt=t0=X(t0)

  其解为:

X ( t ) = e A ( t − t 0 ) X ( t 0 ) + ∫ t 0 t e A ( t − τ ) F ( τ ) d τ X(t)=e^{A\left(t-t_{0}\right)} X\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} F(\tau) d \tau X(t)=eA(tt0)X(t0)+t0teA(tτ)F(τ)dτ

线性系统的能控性与能观性

  能控性概念理解

  考虑一阶常系数非齐次方程组:

{ d X d t = A X + F ( t ) X ∣ t = t 0 = X ( t 0 ) \left\{\begin{array}{l} {\frac{\mathrm{d} X}{\mathrm{d} t}=A X+F(t)} \\ {\left.X\right|_{t=t_{0}}=X\left(t_{0}\right)} \end{array}\right. {dtdX=AX+F(t)Xt=t0=X(t0)

  其解为:

X ( t ) = e A ( t − t 0 ) X ( t 0 ) + ∫ t 0 t e A ( t − τ ) F ( τ ) d τ X(t)=e^{A\left(t-t_{0}\right)} X\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-\tau)} F(\tau) d \tau X(t)=eA(tt0)X(t0)+t0teA(tτ)F(τ)dτ

  如果能够通过输入控制输出,也就是控制 F ( t ) F(t) F(t),使其最后的解能够可控,我们称这个系统是能控的。

  • 定义6.9:对于一个线性定常系统,若在某个有限时间 [ 0 , t 1 ] [0,t_{1}] [0,t1]内存在输入 μ ( t ) \mu(t) μ(t), ( 0 ≤ t ≤ t 1 ) (0 \leq t \leq t_{1}) (0tt1)能够使系统从任意初始状态 X ( 0 ) = X 0 X(0)=X_{0} X(0)=X0转移到 X t 1 = 0 X_{t_{1}}=0 Xt1=0,则称此状态是能控的;若系统的所有状态时能控的,则称此系统是完全能控的

  由前面知道系统的解为:

X ( t 1 ) = e A t 1 X ( 0 ) + ∫ 0 t 1 e A ( t 1 − τ ) B u ( τ ) d τ X(t_{1})=e^{At_{1}} X\left(0\right)+\int_{0}^{t_{1}} e^{A(t_{1}-\tau)} Bu(\tau) d \tau X(t1)=eAt1X(0)+0t1eA(t1τ)Bu(τ)dτ

  想要:

X ( t 1 ) = 0 X(t_{1})=0 X(t1)=0

  得:

e A t 1 X ( 0 ) + ∫ t 0 t 1 e A t 1 ⋅ e − A τ B ( τ ) d τ = 0 e^{At_{1}} X(0)+\int_{t_{0}}^{t_{1}} e^{At_{1}} \cdot e^{-A\tau}B(\tau) d \tau=0 eAt1X(0)+t0t1eAt1eAτB(τ)dτ=0

  约去 e A t 1 e^{At_{1}} eAt1得:

X ( 0 ) + ∫ t 0 t 1 e − A τ B ( τ ) d τ = 0 X(0)+\int_{t_{0}}^{t_{1}} e^{-A\tau}B(\tau) d \tau=0 X(0)+t0t1eAτB(τ)dτ=0

  可见,只要取恰当的 u u u使得上式等于0即可:

  通过观察,可取:

u ( t ) = − B T e − A T t ( ∫ 0 t 1 e − A τ B B T e − A T τ d τ ) − 1 X ( 0 ) u(t)=-B^{\mathrm{T}} \mathrm{e}^{-A^{\mathrm{T}} t}\left(\int_{0}^{t_{1}} \mathrm{e}^{-A \tau} B B^{\mathrm{T}} \mathrm{e}^{-A^{\mathrm{T}} \tau} \mathrm{d} \tau\right)^{-1} X(0) u(t)=BTeATt(0t1eAτBBTeATτdτ)1X(0)

  当然这里假设了矩阵:

W c = ( ∫ 0 t 1 e − A τ B B T e − A T τ d τ ) − 1 W_{c}=\left(\int_{0}^{t_{1}} \mathrm{e}^{-A \tau} B B^{\mathrm{T}} \mathrm{e}^{-A^{\mathrm{T}} \tau} \mathrm{d} \tau\right)^{-1} Wc=(0t1eAτBBTeATτdτ)1

  可逆。即这个矩阵可逆时系统能控。

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值