矩阵分析 (七) 矩阵特征值的估计

矩阵分析系统学习笔记

本系列所有文章来自东北大学韩志涛老师的矩阵分析课程学习笔记,系列如下:
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (二) 内积空间
矩阵分析 (三) 矩阵的标准形
矩阵分析 (四)向量和矩阵的范数
矩阵分析 (五) 矩阵的分解
矩阵分析 (六) 矩阵的函数
矩阵分析 (七) 矩阵特征值的估计
矩阵分析 (八) 矩阵的直积

  矩阵特征值是矩阵的重要参数之一。从前面的讨论可以看到,把矩阵对角化或者求矩阵的约当标准形、判别矩阵的收敛,以及矩阵函数的性质都与特征值有关。当矩阵的阶数高于五次时,没有求根公式,这个时候如果能够给出特征值的位置或者给出特征值的取值范围,会对解决问题有一定的帮助。

  不具体求特征值,而是给出特征值的范围,这就是特征值估计问题。例如讨论矩阵幂级数 ∑ k = 0 ∞ C k A k \sum_{k=0}^{\infty}C_{k}A^{k} k=0CkAk是否收敛,只要知道矩阵 A A A的谱半径是否小于幂级数 ∑ k = 0 ∞ C k z k \sum_{k=0}^{\infty}C_{k}z^{k} k=0Ckzk的收敛半径即可。

  在自动控制理论中,系统的稳定性与特征值的实数部分的符号有关,如果实数部分为负,则系统稳定。因此通过矩阵本身的数值来给出特征值的范围就显得很重要。

特征值界的估计

  前面讲到范数时曾经有:

ρ ( A ) ≤ ∣ ∣ A ∣ ∣ \rho(A) \leq ||A|| ρ(A)∣∣A∣∣

  即矩阵的谱半径小于任何一个矩阵的范数,而范数可以通过矩阵本身的数值来计算,不需要解方程。

  下面给出特征值的估计。

  如果 λ \lambda λ A A A的特征值, x x x为特征向量,则 A x = λ x Ax=\lambda x Ax=λx,进一步假设 x x x是单位向量,则 x H x = 1 x^{H}x=1 xHx=1,两边乘以 x H x^{H} xH

x H A x = λ x H x = λ x^{H}Ax=\lambda x^{H}x =\lambda xHAx=λxHx=λ

  即 λ \lambda λ可以由 x H A x x^{H}Ax xHAx决定,可以通过估计这个函数来估计特征值。

  • 定理7.1:设 A ∈ C n × n A \in C^{n \times n} ACn×n, x ∈ C n x \in C^{n} xCn,且 ∣ ∣ x ∣ ∣ 2 = 1 ||x||_{2}=1 ∣∣x2=1,则:

∣ x H A x ∣ ≤ ∣ ∣ A ∣ ∣ m ∞ |x^{H}Ax| \leq ||A||_{m_{\infty}} xHAx∣∣Am

  • 推论:由 λ = x H A x \lambda=x^{H}Ax λ=xHAx,得 ∣ λ ∣ ≤ ∣ ∣ A ∣ ∣ m ∞ | \lambda | \leq ||A||_{m_{\infty}} λ∣∣Am

  • 定理7.2 设:

A ∈ C n × n , A \in C^{n \times n}, ACn×n,

B = 1 2 ( A + A H ) , C = 1 2 ( A − A H ) B= \frac{1}{2}(A+A^{H}),C= \frac{1}{2}(A-A^{H}) B=21(A+AH)C=21(AAH)

  则 A A A的特征值 λ \lambda λ满足:

∣ R e λ ∣ ≤ ∣ ∣ B ∣ ∣ m ∞ , ∣ I m λ ∣ ≤ ∣ ∣ C ∣ ∣ m ∞ |Re \lambda| \leq ||B||_{m_{\infty}},|Im \lambda | \leq ||C||_{{m_{\infty}}} Reλ∣∣BmI∣∣Cm

  • 推论:厄米特矩阵的特征值都是实数,反厄米特矩阵的特征值为零或者纯虚数。

  • 定理7.3:(舒尔定理) 设 A ∈ C n × n A \in C^{n \times n} ACn×n的特征值为 λ 1 \lambda_{1} λ1, λ 2 \lambda_{2} λ2, ⋯ \cdots λ n \lambda_{n} λn,则:

∣ λ 1 ∣ 2 + ∣ λ 2 ∣ 2 + ⋯ ∣ λ n ∣ 2 ≤ ∣ ∣ A ∣ ∣ F 2 |\lambda_{1}|^{2}+|\lambda_{2}|^{2}+\cdots |\lambda_{n}|^{2} \leq ||A||_{F}^{2} λ12+λ22+λn2∣∣AF2

  且等式成立的充要条件是 A A A为正规矩阵。

特征值的包含区域

  上一节给出了特征值大小的估计,这一节介绍一些判别矩阵特征值位置的方法。

Gerschgorin 盖尔圆定理

  与上一节类似,我们需要用矩阵元素给出特征值的估计。设 λ \lambda λ A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n的特征值, x = ( x 1 , x 2 , ⋯   , x n ) T x=(x_{1},x_{2},\cdots ,x_{n})^{T} x=(x1,x2,,xn)T A A A的属于 λ \lambda λ的特征向量,则由 A x = λ x Ax=\lambda x Ax=λx得:

∑ j = 1 n a i j x j = λ x i ( i = 1 , 2 , ⋯   , n ) \sum_{j=1}^{n}a_{ij}x_{j}=\lambda x_{i} (i=1,2,\cdots , n) j=1naijxj=λxi(i=1,2,,n)

x i ( λ − a i i ) = ∑ j = 1 , j ≠ i n a i j x j x_{i}(\lambda -a_{ii}) =\sum_{j=1,j \neq i}^{n}a_{ij}x_{j} xi(λaii)=j=1,j=inaijxj

∣ λ − a i i ∣ = ∣ ∑ a i j x j x i ∣ ≤ ∑ ∣ a i j ∣ ∣ x j x i ∣ |\lambda-a_{ii}|=|\sum a_{ij} \frac{x_{j}}{x_{i}}| \leq \sum|a_{ij}| |\frac{x_{j}}{x_{i}}| λaii=aijxixjaij∣∣xixj

  如果 ∣ x i ∣ ≥ ∣ x j ∣ |x_{i}| \geq |x_{j}| xixj,则 ∣ x j x i ∣ ≤ 1 |\frac{x_{j}}{x_{i}}| \leq 1 xixj1得:

∣ λ − a i i ∣ = ∑ j = 1 , j ≠ i n ∣ a i j ∣ |\lambda - a_{ii}| = \sum_{j=1,j \neq i}^{n}|a_{ij}| λaii=j=1,j=inaij

  上述不等式在几何上是一个圆,即特征值落在一个圆中

  • 定义 设 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n,记:

R i = ∑ j = 1 , j ≠ i n ∣ a i j ∣ R_{i}=\sum_{j=1 ,j \neq i}^{n} |a_{ij}| Ri=j=1,j=inaij

  称复平面的圆域:

G i = { z ∣ ∣ z − a i i ∣ ≤ R i , z ∈ C } G_{i} = \{z||z-a_{ii}| \leq R_{i} , z \in C\} Gi={z∣∣zaiiRi,zC}

  为 A A A的第 i i i个盖尔圆,称 R i R_{i} Ri为盖尔圆的半径,由于:

x = ( x 1 , x 2 , ⋯   , x n ) x=(x_{1},x_{2},\cdots ,x_{n}) x=(x1,x2,,xn)

  的分量中必有一个 x i x_{i} xi使得 ∣ x i ∣ = m a x j ∣ x j ∣ |x_{i}| = max_{j}|x_{j}| xi=maxjxj,所以必有一个 i i i使得:

∣ λ − a i i ∣ ≤ R i |\lambda - a_{ii}| \leq R_{i} λaiiRi

  成立,由此得到:

  • 定理7.4:矩阵 A ∈ C n × n A \in C^{n \times n} ACn×n的全体特征值都在它的 n n n个盖尔圆构成的并集之中。

  注意到 A ∈ C n × n A \in C^{n \times n} ACn×n A T A^{T} AT的特征值相同,根据定理7.4可得, A A A的特征值也在 A T A^{T} AT n n n个盖尔圆构成的并集之中。称 A T A^{T} AT的盖尔圆为 A A A列盖尔圆

  根据盖尔圆理论,对任何矩阵 A A A特征值一定满足 ∣ λ − a i i ∣ ≤ R i |\lambda -a_{ii}| \leq R_{i} λaiiRi。若 λ = 0 \lambda =0 λ=0,则 ∣ a i i ∣ ≤ R i |a_{ii}| \leq R_{i} aiiRi

  从这里可以看出,若矩阵 A A A严格对角占优,即 ∣ a i i ∣ > R i |a_{ii}| > R_{i} aii>Ri,则:

λ ≠ 0 , ∣ A ∣ ≠ 0 \lambda \neq 0,|A| \neq 0 λ=0A=0

  • 推论:若 A A A为实矩阵 A ∈ R n × n A \in R^{n \times n} ARn×n,且 A A A n n n个盖尔圆是孤立的,则 A A A n n n个互不相同的实特征值。

   A A A实矩阵时,特征方程 ∣ λ E − A ∣ = 0 |\lambda E -A| = 0 λEA=0为实代数方程,它的复根一定成对出现,一定是共轭的,即 a ± i b a \pm ib a±ib的形式,且 ∣ λ − a i i ∣ |\lambda -a_{ii}| λaii的形式,且 ∣ λ − a i i ∣ ≤ R i |\lambda -a_{ii}| \leq R_{i} λaiiRi中, a i i a_{ii} aii是实数,特征值一定是实数

特征值的隔离

  前面讲述了用盖尔圆分析特征值的方法,当矩阵 A A A B B B相似,即 B = C − 1 A C B =C^{-1}AC B=C1AC时, A A A B B B有相同的特征值。利用这一个性质,可以通过改变盖尔圆的大小,分析某个特征值的位置。在这里取比较简单的 C C C,可以取成对角矩阵,且对角线元素为正。

C = d i a g ( c 1 , c 2 , ⋯   , c n ) C=diag(c_{1},c_{2},\cdots ,c_{n}) C=diag(c1,c2,,cn)

B = C A C − 1 = ( a i j c i c j ) n × n B=CAC^{-1} = (a_{ij} \frac{c_{i}}{c_{j}})_{n\times n} B=CAC1=(aijcjci)n×n

  则 A A A B B B有相同的特征值,通过适当地选取正数 c 1 c_{1} c1 c 2 c_{2} c2 ⋯ \cdots c n c_{n} cn,有可能使每一个盖尔圆包含 A A A的一个特征值。选取 c 1 c_{1} c1 c 2 c_{2} c2 ⋯ \cdots c n c_{n} cn的一般原则是,欲使 A A A的第 i i i盖尔圆缩小,可取 c i < 1 c_{i }<1 ci<1,其余取为1,此时 B B B的其他盖尔圆适量放大;反之,欲使 A A A的第 i i i个盖尔圆放大,可取 c i > 1 c_{i} > 1 ci>1,其余取为1,此时 B B B的其余盖尔圆适量缩小。

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值