矩阵分析 (四)向量和矩阵的范数

矩阵分析系统学习笔记

本系列所有文章来自东北大学韩志涛老师的矩阵分析课程学习笔记,系列如下:
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (二) 内积空间
矩阵分析 (三) 矩阵的标准形
矩阵分析 (四)向量和矩阵的范数
矩阵分析 (五) 矩阵的分解
矩阵分析 (六) 矩阵的函数
矩阵分析 (七) 矩阵特征值的估计
矩阵分析 (八) 矩阵的直积

  我们曾经用内积定义了向量空间中一个元素的长度,它是几何长度的推广,利用这个长度的概念我们可以讨论极限逼近的问题。在分析解决这些问题时最重要的是利用了长度的基本性质、非负性齐次性三角表达式

向量的范数

范数的定义

  • 定义4.1:若对任意的 x ∈ C n x \in C^{n} xCn都有一个实数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣与之对应,且满足:
  1. 非负性 x ≠ 0 x \neq 0 x=0时, ∣ ∣ x ∣ ∣ > 0 ||x||>0 ∣∣x∣∣>0,当 x = 0 x=0 x=0时, ∣ ∣ x ∣ ∣ = 0 ||x||=0 ∣∣x∣∣=0;
  2. 齐次性:对任意的 k ∈ C k \in C kC ∣ ∣ k x ∣ ∣ = ∣ k ∣ ⋅ ∣ ∣ x ∣ ∣ ||kx||=|k| \cdot ||x|| ∣∣kx∣∣=k∣∣x∣∣
  3. 三角不等式:对任意的 x x x y y y ∈ C n \in C^{n} Cn都有:

∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x|| + ||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣

  则称 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ C n C^{n} Cn上的向量范数,简称向量范数

几种常见的范数

  • 2范数

  设:

x = ( x 1 , x 2 , ⋯   , x n ) T ∈ C n x=(x_{1},x_{2}, \cdots, x_{n})^{T} \in C^{n} x=(x1,x2,,xn)TCn

  规定:

∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n ∣ x i ∣ 2 ||x||_{2} = \sqrt{\sum_{i=1}^{n}|x_{i}|^{2}} ∣∣x2=i=1nxi2

  很容易证明这是范数,叫作向量的2范数。2范数在酉变换下不变。

  • 1范数

  设:

x ∈ C n x \in C^{n} xCn

  规定:

∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||x||_{1} = \sum_{i=1}^{n}|x_{i}| ∣∣x1=i=1nxi

  则 ∣ ∣ x ∣ ∣ 1 ||x||_{1} ∣∣x1是范数,叫做向量的1范数

  • 向量的 ∞ \infty 范数

  设:

x ∈ C n x \in C^{n} xCn

  规定:

∣ ∣ x ∣ ∣ ∞ = m a x i ∣ x i ∣ ||x||_{\infty} = max_{i}|x_{i}| ∣∣x=maxixi

  则 ∣ ∣ x ∣ ∣ ∞ ||x||_{\infty} ∣∣x是范数,叫做向量的 ∞ \infty 范数

  • 向量的 p p p范数

  设 x ∈ R n x \in R^{n} xRn,规定,

∣ ∣ x ∣ ∣ p = ( ∑ ∣ x i ∣ p ) 1 p ||x||_{p} = (\sum |x_{i}|^{p})^{\frac{1}{p}} ∣∣xp=(xip)p1

  则 ∣ ∣ x ∣ ∣ p ||x||_{p} ∣∣xp也是范数,叫做向量的 p p p范数

  • 其它:

  规定:

∣ ∣ f ∣ ∣ = m a x ∣ f ( x ) ∣ ||f||=max|f(x)| ∣∣f∣∣=maxf(x)

   ∣ ∣ f ∣ ∣ ||f|| ∣∣f∣∣是函数的范数

  在连续函数的空间中,规定:

∣ ∣ f ( x ) ∣ ∣ = ∫ a b ∣ f ( x ) ∣ d x ||f(x)|| = \int_{a}^{b} |f(x)|dx ∣∣f(x)∣∣=abf(x)dx

   ∣ ∣ f ∣ ∣ ||f|| ∣∣f∣∣也是范数

生成范数

  在一个向量空间之中可以构造无穷多种范数,前面所述只是最常用的范数。下面给出从已知范数构造新的向量范数的方法

  • 例4 设:

x = ( x 1 , x 2 , ⋯   , x n ) T ∈ C n x=(x_{1},x_{2}, \cdots, x_{n})^{T} \in C^{n} x=(x1,x2,,xn)TCn

  规定

∣ ∣ x ∣ ∣ = a ∣ ∣ x ∣ ∣ 1 + b ∣ ∣ x ∣ ∣ 2     ( a , b > 0 ) ||x||=a||x||_{1} + b||x||_{2} \ \ \ (a,b > 0) ∣∣x∣∣=a∣∣x1+b∣∣x2   (a,b>0)

  则 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣是范数。

  • 例5 A ∈ C n m × n A \in C_{n}^{m \times n} ACnm×n ∣ ∣ ⋅ ∣ ∣ a || \cdot ||_{a} ∣∣a C m C^{m} Cm上的一种范数,对于任意的 x ∈ C n x \in C^{n} xCn,规定 ∣ ∣ x ∣ ∣ = ∣ ∣ A x ∣ ∣ a ||x||=||Ax||_{a} ∣∣x∣∣=∣∣Axa,则 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ C n C^{n} Cn上的范数。

  由于矩阵 A A A可以有无穷多,所以用这种方法可以构造无穷多种范数

范数的等价

  • 定义4.2:给定 C n C^{n} Cn上的向量序列 { x k } \{x^{k}\} {xk},其中

x k = ( x 1 k , x 2 k , ⋯   , x n k )     ( k = 1 , 2 , ⋯   ) x^{k}=(x_{1}^{k},x_{2}^{k},\cdots ,x_{n}^{k}) \ \ \ (k=1,2,\cdots) xk=(x1kx2k,xnk)   (k=1,2,)

  如果:

l i m ∞ x i k = x i lim_{\infty} x_{i}^{k} = x_{i} limxik=xi

  则称 { x k } \{x^{k}\} {xk}收敛,记作:

l i m k → ∞ x k = x lim_{k \rightarrow \infty} x^{k} = x limkxk=x

  不收敛的序列叫作发散序列

  • 定理4.1 C n C^{n} Cn中的向量序列 { x k } \{x^{k}\} {xk}收敛于 x x x的充分必要条件是,对于 C n C^{n} Cn上的范数 ∣ ∣ ⋅ ∣ ∣ ∞ ||\cdot||_{\infty} ∣∣

l i m ∞ ∣ ∣ x k − x ∣ ∣ ∞ = 0 lim_{\infty}||x^{k}-x||_{\infty} = 0 lim∣∣xkx=0

  收敛是向量序列的性质,这种性质不应该受到度量方式的影响,也就是一个向量序列在一种范数的意义下收敛,那么它在另一种范数的意义下也应该收敛。一个空间中的序列在一种范数下收敛,那么它在另一种范数下也是收敛的。

  • 定义4.3 ∣ ∣ x ∣ ∣ a ||x||_{a} ∣∣xa ∣ ∣ x ∣ ∣ b ||x||_{b} ∣∣xb C n C^{n} Cn上的两种向量范数,如果存在正数 k k k l l l使得对于任意的 x x x都有:

k ∣ ∣ x ∣ ∣ b ≤ ∣ ∣ x ∣ ∣ a ≤ l ∣ ∣ x ∣ ∣ b k||x||_{b} \leq ||x||_{a} \leq l ||x||_{b} k∣∣xb∣∣xal∣∣xb

  则称向量范数 ∣ ∣ x ∣ ∣ a ||x||_{a} ∣∣xa ∣ ∣ x ∣ ∣ b ||x||_{b} ∣∣xb等价。

  • 定理4.2 C n C^{n} Cn空间上所有范数等价。

  即若 { x k } \{x^{k}\} {xk} ∣ ∣ ⋅ ∣ ∣ ∞ ||\cdot||_{\infty} ∣∣意义下收敛,则 { x k } \{x^{k}\} {xk} ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣意义下也收敛。向量序列的收敛不受范数选择影响

  同一个向量在不同的范数下长度一般不同,如:

x = ( 1 , 1 , ⋯   , 1 ) ∈ C n x=(1,1,\cdots ,1) \in C^{n} x=(1,1,,1)Cn

  则:

∣ ∣ x ∣ ∣ 2 = n , ∣ ∣ x ∣ ∣ 1 = n ,   ∣ ∣ x ∣ ∣ ∞ = 1 ||x||_{2} = \sqrt{n},||x||_{1} = n , \ ||x||_{\infty}=1 ∣∣x2=n ∣∣x1=n, ∣∣x=1

  相差很大,但是在讨论收敛时,效果也是一样的,但是要注意,这里讨论的是有限维的空间,无穷维空间可以不等价

矩阵的范数

  由于一个 m × n m \times n m×n矩阵可以看作 m × n m \times n m×n维向量,因此可以按照定义向量范数的方法来定义矩阵范数,但是矩阵之间还有矩阵的乘法,在研究矩阵范数时应该给予考虑

方阵的范数

  • 定义4.4 :若对于任意的 A ∈ C n × n A \in C^{n \times n} ACn×n都有一个实数 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣与之对应,且满足:
  1. 非负性 A ≠ O A \neq O A=O ∣ ∣ A ∣ ∣ > 0 ||A|| >0 ∣∣A∣∣>0 A = O A=O A=O ∣ ∣ A ∣ ∣ = 0 ||A||=0 ∣∣A∣∣=0
  2. 齐次性:对任意的 k ∈ C k \in C kC:

∣ ∣ k A ∣ ∣ = ∣ k ∣   ∣ ∣ A ∣ ∣ ||kA||=|k|\ ||A|| ∣∣kA∣∣=k ∣∣A∣∣

  1. 三角不等式:对任意的 A , B ∈ C n × n A,B \in C^{n \times n} ABCn×n

∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ||A+B|| \leq ||A|| +||B|| ∣∣A+B∣∣∣∣A∣∣+∣∣B∣∣

  1. 相容性:对任意的 A , B ∈ C n × n A,B \in C^{n \times n} ABCn×n都有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ ||AB|| \leq ||A|| \cdot ||B|| ∣∣AB∣∣∣∣A∣∣∣∣B∣∣

  则称 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣ C n × n C^{n \times n} Cn×n上矩阵的范数,简称矩阵范数

  • 由于定义中的前三条与向量范数一致,因此矩阵范数有与向量范数有类似的性质,如:

∣ ∣ − A ∣ ∣ = ∣ ∣ A ∣ ∣ , ∣    ∣ ∣ A ∣ ∣ − ∣ ∣ B ∣ ∣    ∣ ≤ ∣ ∣ A − B ∣ ∣ ||-A|| = ||A||,| \ \ || A|| -||B|| \ \ | \leq ||A-B|| ∣∣A∣∣=∣∣A∣∣  ∣∣A∣∣∣∣B∣∣  ∣∣AB∣∣

  以及 C n × n C^{n \times n} Cn×n上的两个矩阵范数等价。

常用的范数

  • 矩阵 m 1 m_{1} m1范数

  与 ∣ ∣ x ∣ ∣ 1 ||x||_{1} ∣∣x1相仿,设 A = ( a i j ) n × n ∈ C n × n A=(a_{ij})_{n \times n} \in C^{n \times n} A=(aij)n×nCn×n,规定:

∣ ∣ A ∣ ∣ m 1 = ∑ i , j ∣ a i j ∣ ||A||_{m_{1}} = \sum_{i,j} |a_{ij}| ∣∣Am1=i,jaij

  则 ∣ ∣ A ∣ ∣ m 1 ||A||_{m_{1}} ∣∣Am1 C n × n C^{n \times n} Cn×n上的矩阵范数,称 m 1 m_{1} m1范数

  • 矩阵 F F F范数

  与 ∣ ∣ x ∣ ∣ 2 ||x||_{2} ∣∣x2相仿,对于 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n,规定:

∣ ∣ A ∣ ∣ F = ∑ i , j ∣ a i j ∣ 2 = t r ( A H A ) ||A||_{F} = \sqrt{\sum_{i,j}|a_{ij}|^{2}}=\sqrt{tr(A^{H}A)} ∣∣AF=i,jaij2 =tr(AHA)

  则 ∣ ∣ A ∣ ∣ F ||A||_{F} ∣∣AF C n × n C^{n \times n} Cn×n上的一种矩阵范数,称为矩阵的Frobenius范数,简称 F F F范数

  • 矩阵的 ∞ \infty 范数

  设 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n,规定:

∣ ∣ A ∣ ∣ m ∞ = n ⋅ m a x i , j ∣ a i j ∣ ||A||_{m_{\infty}} = n \cdot max_{i,j} |a_{ij}| ∣∣Am=nmaxi,jaij

  则 ∣ ∣ A ∣ ∣ m ∞ ||A||_{m_{\infty}} ∣∣Am C n × n C^{n \times n} Cn×n上的矩阵范数。

与向量范数的相容性

  • 定义4.5:设 ∣ ∣ ⋅ ∣ ∣ m ||\cdot||_{m} ∣∣m C n × n C^{n \times n} Cn×n上的矩阵范数 ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_{v} ∣∣v C n C^{n} Cn上的向量范数,对任意的 A ∈ C n × n A \in C^{n\times n} ACn×n x ∈ C n x \in C^{n} xCn,都有:

∣ ∣ A X ∣ ∣ v ≤ ∣ ∣ A ∣ ∣ m ∣ ∣ x ∣ ∣ v ||AX||_{v} \leq ||A||_{m}||x||_{v} ∣∣AXv∣∣Am∣∣xv

  则称矩阵范数 ∣ ∣ ⋅ ∣ ∣ m ||\cdot||_{m} ∣∣m与向量范数 ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_{v} ∣∣v是相容的

  • C n × n C^{n \times n} Cn×n上的 m 1 m_{1} m1范数与 C n C^{n} Cn上的1范数相容。
  • C n × n C^{n \times n} Cn×n上的 F F F范数与 C n C^{n} Cn上的2范数相容。

用矩阵范数来定义向量范数

  • ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ C n × n C^{n \times n} Cn×n上的一种矩阵范数,则在 C n C^{n} Cn上可以定义一种向量范数。以二维空间为例,如设 x ∈ C 2 x \in C^{2} xC2,取 α = ( α 1 , α 2 ) T ≠ 0 \alpha=(\alpha_{1},\alpha_{2})^{T} \neq 0 α=(α1α2)T=0 ,设 ∣ ∣ ⋅ ∣ ∣ m 1 ||\cdot||_{m_{1}} ∣∣m1 C 2 × 2 C^{2 \times 2} C2×2中的范数,任取:

A = ( a i j ) 2 × 2 ∈ C 2 × 2 A=(a_{ij})_{2 \times 2} \in C^{2 \times 2} A=(aij)2×2C2×2

  则:

∣ ∣ A ∣ ∣ m 1 = ∣ a 11 ∣ + ∣ a 12 ∣ + ∣ a 21 ∣ + ∣ a 22 ∣ ||A||_{m_{1}} = |a_{11}|+|a_{12}|+|a_{21}|+|a_{22}| ∣∣Am1=a11+a12+a21+a22

  现在任取:

x ∈ C 2 , x = ( x 1 , x 2 ) T x \in C^{2},x =(x_{1},x_{2})^{T} xC2x=(x1,x2)T

  则:

x α H = ( x 1 x 2 ) ( α ˉ 1 α ˉ 2 ) = ( x 1 α ˉ 1 x 1 α ˉ 2 x 2 α ˉ 1 x 2 α ˉ 2 ) x \alpha^{H}=\left(\begin{array}{l} {x_{1}} \\ {x_{2}} \end{array}\right)\left(\bar{\alpha}_{1} \quad \bar{\alpha}_{2}\right)=\left(\begin{array}{ll} {x_{1} \bar{\alpha}_{1}} & {x_{1} \bar{\alpha}_{2}} \\ {x_{2} \bar{\alpha}_{1}} & {x_{2} \bar{\alpha}_{2}} \end{array}\right) xαH=(x1x2)(αˉ1αˉ2)=(x1αˉ1x2αˉ1x1αˉ2x2αˉ2)

  是 C 2 × 2 C^{2 \times 2} C2×2的矩阵。规定:

∥ x ∥ = ∥ x α H ∥ m 1 = ∣ x 1 α ˉ 1 ∣ + ∣ x 1 α ˉ 2 ∣ + ∣ x 2 α ˉ 1 ∣ + ∣ x 2 α ˉ 2 ∣ \|x\|=\left\|x \alpha^{\mathrm{H}}\right\|_{m_{1}}=\left|x_{1} \bar{\alpha}_{1}\right|+\left|x_{1} \bar{\alpha}_{2}\right|+\left|x_{2} \bar{\alpha}_{1}\right|+\left|x_{2} \bar{\alpha}_{2}\right| x= xαH m1=x1αˉ1+x1αˉ2+x2αˉ1+x2αˉ2

  则在 C 2 C^{2} C2中定义了一种运算。

  • 如取:

α = ( 1 , 2 ) T , x = ( 1 , 1 ) T \alpha = (1,2)^{T},x=(1,1)^{T} α=(1,2)Tx=(1,1)T

  则:

∥ x ∥ = ∥ x α H ∥ m 1 = ∥ ( 1 1 ) ( 1 , 2 ) ∥ m 1 = 6 \|x\|=\left\|x \alpha^{H}\right\|_{m_{1}}=\left\|\left(\begin{array}{l} {1} \\ {1} \end{array}\right)(1,2)\right\|_{m_{1}}=6 x= xαH m1= (11)(1,2) m1=6

  取:

α = ( 1 , i ) T , x = ( 1 , 1 ) \alpha = (1,i)^{T},x=(1,1) α=(1,i)T,x=(1,1)

  则:

∣ ∣ x ∣ ∣ = ∣ ∣ x α H ∣ ∣ m 1 = 4 ||x||=||x \alpha^{H}||_{m_{1}}=4 ∣∣x∣∣=∣∣xαHm1=4

  • 定理4.3:设 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ C n × n C^{n \times n} Cn×n上的一种范数,则在 C n C^{n} Cn上必存在与它相容的向量范数。

从属范数

  前面介绍了由矩阵范数定义向量范数的方法,接下来将要介绍由向量范数来定义矩阵范数的方法。

  我们知道,单位矩阵在矩阵的乘法中的作用类似于1在乘法中的作用。但是对于已经知道的矩阵范数,如 m 1 m_{1} m1 F F F m ∞ m_{\infty} m范数, n n n阶单位矩阵 E E E的范数。

∣ ∣ E ∣ ∣ m 1 = n , ∣ ∣ E ∣ ∣ F = n , ∣ ∣ E ∣ ∣ m ∞ = n ||E||_{m_{1}} = n,||E||_{F} = \sqrt{n},||E||_{m \infty} = n ∣∣Em1=n∣∣EF=n ∣∣Em=n

  能否构造出使得 ∣ ∣ E ∣ ∣ = 1 ||E||=1 ∣∣E∣∣=1的范数呢?

  • 定理4.4:已知 C n C^{n} Cn上的向量范数 ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_{v} ∣∣v,对于任意的 A ∈ C n × n A \in C^{n \times n} ACn×n,规定:

∣ ∣ A ∣ ∣ = m a x x ≠ 0 ∣ ∣ A x ∣ ∣ v ∣ ∣ x ∣ ∣ v ||A|| = max_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}} ∣∣A∣∣=maxx=0∣∣xv∣∣Axv

  则 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣ C n × n C^{n \times n} Cn×n上的矩阵范数,称为由向量范数 ∣ ∣ ⋅ ∣ ∣ v ||\cdot||_{v} ∣∣v导出的矩阵范数,简称导出范数或者从属范数

从属范数的计算

  从属范数的计算是求多元函数的最大值,计算并不容易,我们只就向量的1,2, ∞ \infty 导出的矩阵范数分别是 ∣ ∣ A ∣ ∣ 1 ||A||_{1} ∣∣A1 ∣ ∣ A ∣ ∣ 2 ||A||_{2} ∣∣A2 ∣ ∣ A ∣ ∣ ∞ ||A||_{\infty} ∣∣A,则:

  1. ∣ ∣ A ∣ ∣ 1 = m a x j ∑ i = 1 n ∣ a i j ∣ ||A||_{1} = max_{j} \sum_{i=1}^{n} |a_{ij}| ∣∣A1=maxji=1naij
  2. ∣ ∣ A ∣ ∣ ∞ = m a x i ∑ j = 1 n ∣ a i j ∣ ||A||_{\infty} = max_{i} \sum_{j=1}^{n}|a_{ij}| ∣∣A=maxij=1naij
  3. ∣ ∣ A ∣ ∣ 2 = λ 1 ||A||_{2} = \sqrt{\lambda_{1}} ∣∣A2=λ1 λ 1 \lambda_{1} λ1 A H A A^{H}A AHA的最大特征值。

   ∣ ∣ A ∣ ∣ 1 ||A||_{1} ∣∣A1是矩阵 A A A的元素取模,然后把每一列元素加起来,取这些列和的最大值。而 ∣ ∣ A ∣ ∣ ∞ ||A||_{\infty} ∣∣A是把每行的模加起来,然后取最大值。

范数的应用举例

  • 定义4.6:设 A ∞ C n × n A \infty C^{n \times n} ACn×n λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn A A A n n n个特征值,称 ρ ( A ) = m a x i ∣ λ i ∣ \rho(A) = max_{i}|\lambda_{i}| ρ(A)=maxiλi A A A的谱半径,即 A A A谱半径是 A A A的特征值模的最大值

  • 定理4.6:设 A ∈ C n × n A \in C^{n \times n} ACn×n,则对 C n × n C^{n \times n} Cn×n上的任何一个矩阵范数 ∣ ∣ ⋅ ∣ ∣ m ||\cdot||_{m} ∣∣m,都有:

ρ ( A ) ≤ ∣ ∣ A ∣ ∣ m \rho(A) \leq ||A||_{m} ρ(A)∣∣Am

  • 定理4.7:设 A ∈ C n × n A \in C^{n \times n} ACn×n,任取一个正数,都可以找到一个矩阵范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣,使得:

∣ ∣ A ∣ ∣ ≤ ρ ( A ) + ε ||A|| \leq \rho(A) + \varepsilon ∣∣A∣∣ρ(A)+ε

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值