矩阵分析 (一) 线性空间和线性变换

矩阵分析系统学习笔记

本系列所有文章来自东北大学韩志涛老师的矩阵分析课程学习笔记,系列如下:
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (二) 内积空间
矩阵分析 (三) 矩阵的标准形
矩阵分析 (四)向量和矩阵的范数
矩阵分析 (五) 矩阵的分解
矩阵分析 (六) 矩阵的函数
矩阵分析 (七) 矩阵特征值的估计
矩阵分析 (八) 矩阵的直积


  我们曾在线性代数里学过向量空间,它是由向量做成的集合。在这个集合里向量可以相加,向量可以乘以一个倍数,由此我们可以讨论向量的线性组合、向量的线性相关等概念。

线性空间的概念

线性空间

  • 定义1.1:数域:一个对和、差、积、商运算都封闭的复数的非空集合 P P P称为数域

  • 定义1.2:设 V V V是一个非空的集合,如果在 V V V中定义二元运算(加法),

    • V V V中任意两个元素 α \alpha α, β \beta β经过这个运算结果仍是 V V V中的一个元素,这个元素称为 α \alpha α β \beta β,记 α + β \alpha + \beta α+β
    • 在数域 P P P V V V之间定义一个运算叫作数量乘法,即对于 P P P中的任意数 k k k V V V中的任意一个元素 α \alpha α,经过这一运算的结果仍然是 V V V中的一个元素,称为 k k k α \alpha α数量乘积,记 k α k\alpha kα

  如果上述运算满足以下规则,则称 V V V为数域 P P P上的线性空间 V V V中的元素也称为向量。

  1. 对任意的 α \alpha α β \beta β ∈ \in V V V,则称 V V V为数域 P P P上的线性空间, V V V中的元素也称为向量。
  2. 对任意的 α \alpha α β \beta β, γ \gamma γ ∈ \in V V V, ( α + β ) + γ = α + ( β + γ ) (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) (α+β)+γ=α+(β+γ)
  3. V V V中存在一个零元素,记作 0 0 0,对任意的 α + 0 = α \alpha + 0 = \alpha α+0=α
  4. 对任意的 α ∈ V \alpha \in V αV,都有 α \alpha α的负元素,记作 − α -\alpha α;
  5. 对任意的 α ∈ V \alpha \in V αV,有 1 ⋅ α = α 1 \cdot \alpha = \alpha 1α=α;
  6. 对任意的 α ∈ V \alpha \in V αV k , l ∈ P k,l \in P k,lP k ( l α ) = ( k l ) α k(l \alpha) = (kl)\alpha k(lα)=(kl)α;
  7. 对任意的 α ∈ V \alpha \in V αV k , l ∈ P k,l \in P k,lP ( k + l ) α = k α + l α (k+l)\alpha = k \alpha + l\alpha (k+l)α=kα+lα
  8. 对任意的 k ∈ P k \in P kP α , β ∈ V \alpha,\beta \in V α,βV k ( α + β ) = k α + k β k(\alpha+\beta) = k \alpha + k\beta k(α+β)=kα+kβ

线性空间的例子,基底、坐标

  • 定义1.3:(线性相关)在 V V V中有一组元素 α 1 \alpha_{1} α1 α 2 \alpha_{2} α2 ⋯ \cdots α n \alpha_{n} αn线性无关,且其他元素都可以被它们线性表达,则称 α 1 \alpha_{1} α1 α 2 \alpha_{2} α2 ⋯ \cdots α n \alpha_{n} αn V V V的一组 n n n为空间 V V V的维数,记作 d i m V = n dimV=n dimV=n,而表达式的系数是这个元素的坐标

  • 例题: 求 P 3 [ t ] P_{3}[t] P3[t]中多项式 1 + t + t 2 1+t+t^{2} 1+t+t2在基底1, t − 1 t-1 t1 ( t − 2 ) ( t − 1 ) (t-2)(t-1) (t2)(t1)下的坐标:

  解:

1 + t + t 2 = k 1 × 1 + k 2 × ( t − 1 ) + k 3 ( t − 2 ) ( t − 1 ) 1+t+t^{2} = k_{1} \times 1+k_{2} \times (t-1) + k_{3}(t-2)(t-1) 1+t+t2=k1×1+k2×(t1)+k3(t2)(t1)

  令其对应项相等即可。

基变换与坐标变换

  一般来说,一个元素在不同的基底下有不同的坐标,它们的坐标有什么关系呢?

  设 V V V P P P上的 n n n维线性空间, α 1 \alpha_{1} α1 α 2 \alpha_{2} α2 ⋯ \cdots α n \alpha_{n} αn β 1 \beta_{1} β1 β 2 \beta_{2} β2 ⋯ \cdots β n \beta_{n} βn V V V的两个不同的基底,因为 α 1 \alpha_{1} α1 α 2 \alpha_{2} α2 ⋯ \cdots α n \alpha_{n} αn是基底,所以 β 1 \beta_{1} β1 β 2 \beta_{2} β2 ⋯ \cdots β n \beta_{n} βn可以被这个基底线性表达,这两个基底的关系是:
( β 1 , β 2 , ⋯ , β n ) (\beta_{1},\beta_{2},\cdots,\beta_{n}) (β1β2βn)
= ( α 1 , α 2 , ⋯ , α n ) A =(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})A =(α1α2αn)A

  利用过渡矩阵就可以得到这个元素的两个坐标之间的关系:
α = ( β 1 , β 2 , ⋯   , β n ) ( l 1 l 2 ⋮ l n ) \alpha=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)\left(\begin{array}{c}{l_{1}} \\ {l_{2}} \\ {\vdots} \\ {l_{n}}\end{array}\right) α=(β1,β2,,βn) l1l2ln
= ( α 1 , α 2 , ⋯   , α n ) A ( l 1 l 2 ⋮ l n ) =\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) A\left(\begin{array}{c}{l_{1}} \\ {l_{2}} \\ {\vdots} \\ {l_{n}}\end{array}\right) =(α1,α2,,αn)A l1l2ln
= ( α 1 , α 2 , ⋯   , α n ) ( k 1 k 2 ⋮ k n ) =\left( \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \left(\begin{array}{c}{k_{1}} \\ {k_{2}} \\ {\vdots} \\ {k_{n}}\end{array} \right) =(α1,α2,,αn) k1k2kn

( k 1 k 2 ⋮ k 2 ) = A ( l 1 l 2 ⋮ l n ) \left(\begin{array}{c}{k_{1}} \\ {k_{2}} \\ {\vdots} \\ {k_{2}}\end{array} \right)=A\left(\begin{array}{c}{l_{1}} \\ {l_{2}} \\ {\vdots} \\ {l_{n}}\end{array} \right) k1k2k2 =A l1l2ln

子空间和维数定理

子空间及生成方式

  我们知道三维线性空间 R 3 R^{3} R3的二维平面 R 2 R^{2} R2也是一个线性空间,这种类型的空间叫作子空间

  • 定义1.5:设 V V V是数域 P P P上的线性空间 W W W V V V的非空子集,如果 W W W对于线性空间 V V V所定义的加法运算及数乘运算也构成 P P P上的线性空间,则称 W W W V V V线性子空间简称子空间

  • 定理1.1:设 W W W P P P上的线性空间 V V V的非空子集,则 W W W V V V线性子空间的充要条件是:
    1):若 α , β ∈ W \alpha,\beta \in W αβW,则 α + β ∈ W \alpha + \beta \in W α+βW
    2):若 α ∈ W \alpha \in W αW k ∈ P k \in P kP,则 k α ∈ W k\alpha \in W kαW
    { 0 } \{0\} {0} V V V本身也是 V V V的子空间,这两个子空间是 V V V平凡子空间

  • α 1 \alpha_{1} α1 α 2 \alpha_{2} α2 ⋯ \cdots α m \alpha_{m} αm V V V上的 m m m个元素,由这 m m m个元素的任意组合构成的集合 { k 1 α 1 + ⋯ + k m α m } \{k_{1}\alpha_{1}+\cdots+k_{m}\alpha_{m}\} {k1α1++kmαm} V V V中的加法及数乘封闭,因而这个子集是 V V V中的子空间。记作:

L ( α 1 , α 2 , ⋯ , α m ) L(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}) L(α1α2αm)

  • 用原有的子空间生成新的子空间的方法:
    1):设 V 1 V_{1} V1 V 2 V_{2} V2 V V V的子空间,则 V 1 ∩ V 2 V_{1} \cap V_{2} V1V2 V V V的子空间,叫做两个子空间的交子空间
    2):设 V 1 V_{1} V1 V 2 V_{2} V2 V V V的子空间, V 1 + V 2 V_{1}+V_{2} V1+V2也是 V V V的子空间,这里:
    V 1 + V 2 = { α 1 + α 2 ∣ α 1 ∈ V 1 , α 2 ∈ V 2 } V_{1}+V_{2}=\{\alpha_{1}+\alpha_{2}|\alpha_{1} \in V_{1},\alpha_{2} \in V_{2}\} V1+V2={α1+α2α1V1α2V2}

  这个子空间叫做 V 1 V_{1} V1 V 2 V_{2} V2和子空间

维数定理

  由两个子空间 V 1 V_{1} V1 V 2 V_{2} V2生成的子空间的维数 d i m ( V 1 + V 2 ) dim(V_{1}+V_{2}) dim(V1+V2), d i m ( V 1 ∩ V 2 ) dim(V_{1} \cap V_{2}) dim(V1V2)与原来的子空间的维数之间有一个关系,称之为维数定理,即:
d i m V 1 + d i m V 2 dimV_{1}+dimV_{2} dimV1+dimV2
= d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) =dim(V_{1}+V_{2})+dim(V_{1} \cap V_{2}) =dim(V1+V2)+dim(V1V2)

  • 定理1.2 V 1 + V 2 V_{1}+V_{2} V1+V2直和的充要条件是 V 1 ∩ V 2 = { 0 } V_{1} \cap V_{2} = \{0\} V1V2={0}

  这个几个概念比较重要,需要记住。

线性空间中的线性变换

  • 定义1.6:设 T T T V V V上的变换,如果对于任意的 α \alpha α β ∈ V \beta \in V βV k ∈ P k \in P kP都有:
    T ( α + β ) = T α + T β T(\alpha + \beta)=T\alpha + T\beta T(α+β)=Tα+
    T ( k α ) = k T α T(k\alpha)=kT\alpha T(kα)=kTα

  则称 T T T V V V上的线性变换。线性变换保持 V V V上的运算。

  上面这个线性变换的公式需要记住,经常会考这个改变以及以下变种。比如下文的线性变换的矩阵的公式:

  由:

( ε 1 , ε 2 , ε 3 ) = ( e 1 , e 2 , e 3 ) C (\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) = (e_{1},e_{2},e_{3})C (ε1ε2ε3)=(e1,e2,e3)C

  能得到:

T ( ε 1 , ε 2 , ε 3 ) = T ( e 1 , e 2 , e 3 ) C T(\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) = T(e_{1},e_{2},e_{3})C T(ε1ε2ε3)=T(e1,e2,e3)C

  这时如果知道:

T ( ε 1 , ε 2 , ε 3 ) = ( ε 1 , ε 2 , ε 3 ) A T(\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) = (\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) A T(ε1ε2ε3)=(ε1ε2ε3)A

  即可求出:

T ( e 1 , e 2 , e 3 ) = T ( ε 1 , ε 2 , ε 3 ) C − 1 T(e_{1},e_{2},e_{3}) = T(\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) C^{-1} T(e1,e2,e3)=T(ε1ε2ε3)C1

  等于:

T ( e 1 , e 2 , e 3 ) = ( ε 1 , ε 2 , ε 3 ) A C − 1 T(e_{1},e_{2},e_{3}) = (\varepsilon_{1},\varepsilon_{2},\varepsilon_{3} ) A C^{-1} T(e1,e2,e3)=(ε1ε2ε3)AC1

  等于:

T ( e 1 , e 2 , e 3 ) = ( e 1 , e 2 , e 3 ) C A C − 1 T(e_{1},e_{2},e_{3}) = (e_{1},e_{2},e_{3})CA C^{-1} T(e1,e2,e3)=(e1,e2,e3)CAC1

  • 零变换单位变换也是线性变换零变换是把所有元素变成零的变换,单位变换是把每个元素映射成自己的变换。

  • 线性变换作为一种运算也可以组合,如果 T 1 T_{1} T1 T 2 T_{2} T2是线性变换,则:

( T 1 + T 2 ) α = T 1 α + T 2 α , ( k T 1 ) α = k ( T 1 α ) (T_{1}+T_{2})\alpha =T_{1}\alpha+T_{2}\alpha_{}, \\ (kT_{1})\alpha=k(T_{1}\alpha) (T1+T2)α=T1α+T2α,(kT1)α=k(T1α)

  可以证明,线性空间中的所有线性变换也做成一个线性空间,记作 L ( V ) L(V) L(V)

  • 即用线性变换,定义的子空间,一个是像子空间,一个是核子空间。
    T V = { T α ∣ α ∈ V } TV=\{T\alpha|\alpha \in V\} TV={TααV}
    T − 1 ( 0 ) = k e r T = { α ∣ α ∈ V , T α = 0 } T^{-1}(0)=kerT=\{\alpha|\alpha \in V,T\alpha=0\} T1(0)=kerT={ααV,Tα=0}

  像子空间是由 V V V中所有元素的像构成的,即任取 β ∈ T V \beta \in TV βTV,则一定存在 α ∈ V \alpha \in V αV,使得 β = T α \beta=T\alpha β=Tα

  核子空间是由所有 α \alpha α中的一些元素构成的,这些元素在线性变换的作用下是零。

  • 定理1.3(维数定理):设 T T T n n n维空间上的线性变换,则
    d i m T V + d i m T − 1 ( 0 ) = n dimTV+dimT^{-1}(0)=n dimTV+dimT1(0)=n

线性变换的矩阵

   V V V上的所有线性变换构成的子空间是一个比较抽象的空间,我们知道一些具体的线性变换,但是任意一个线性变换是什么样子的,怎么表达呢?

  设 α ∈ V \alpha \in V αV

α = ∑ i = 1 n k i α i = ( α 1 , α 2 , ⋯   , α n ) ( k 1 k 2 ⋮ k n ) \alpha = \sum_{i=1}^{n} k_{i}\alpha_{i}=\left( \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \left(\begin{array}{c}{k_{1}} \\ {k_{2}} \\ {\vdots} \\ {k_{n}}\end{array} \right) α=i=1nkiαi=(α1,α2,,αn) k1k2kn

T α = ( T α 1 , T α 2 , ⋯   , T α n ) ( k 1 k 2 ⋮ k n ) T\alpha=\left( T \alpha_{1},T \alpha_{2}, \cdots, T \alpha_{n}\right) \left(\begin{array}{c}{k_{1}} \\ {k_{2}} \\ {\vdots} \\ {k_{n}}\end{array} \right) Tα=(Tα1,Tα2,,Tαn) k1k2kn
= ∑ i = 1 n k i T α i =\sum_{i=1}^{n} k_{i}T\alpha_{i} =i=1nkiTαi

  可以看出,决定线性变换结果的是:

T α 1 , T α 2 ⋯   , T α n T\alpha_{1},T\alpha_{2} \cdots ,T\alpha_{n} Tα1Tα2,Tαn

  即基底在这个线性变换之下变成了什么形式。

  因为 T α 1 , T α 2 ⋯   , T α n T\alpha_{1},T\alpha_{2} \cdots ,T\alpha_{n} Tα1Tα2,Tαn,仍然是 V V V中的元素,当然可以被 V V V的基底表达:

{ T α 1 = a 11 α 1 + ⋯ + a n 1 α n T α 2 = a 12 α 1 + ⋯ + α n 2 α n ⋮ T α n = a 1 n α 1 + ⋯ + a n n α n \left\{\begin{array}{l}{T \boldsymbol{\alpha}_{1}=a_{11} \boldsymbol{\alpha}_{1}+\cdots+a_{n 1} \boldsymbol{\alpha}_{n}} \\ {T \boldsymbol{\alpha}_{2}=a_{12} \boldsymbol{\alpha}_{1}+\cdots+\boldsymbol{\alpha}_{n 2} \boldsymbol{\alpha}_{n}} \\ {\vdots} \\ {T \boldsymbol{\alpha}_{n}=a_{1 n} \boldsymbol{\alpha}_{1}+\cdots+a_{n n} \boldsymbol{\alpha}_{n}}\end{array}\right. Tα1=a11α1++an1αnTα2=a12α1++αn2αnTαn=a1nα1++annαn

   A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n为线性变换 T T T在基底 α 1 , ⋯ , α n \alpha_{1},\cdots,\alpha_{n} α1αn下的矩阵。

  可见每一个线性变换实际上与一个矩阵相对应,反过来,每一个矩阵也对应一个线性变换,即给定一个矩阵 A A A,只要定义:
( T α 1 , T α 2 , ⋯   , T α n ) = ( α 1 , α 2 , ⋯ , α n ) A \left( T \alpha_{1},T \alpha_{2}, \cdots, T \alpha_{n}\right)=(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})A (Tα1,Tα2,,Tαn)=(α1α2αn)A
  则这个矩阵对应一个线性变换。

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值