- 产出 y ∗ y^* y∗关于人口增长率 n n n的弹性。
首先,对 y ∗ = f ( k ∗ ) y^*=f(k^*) y∗=f(k∗)两边对 n n n求导数
∂ y ∗ ∂ n = f ′ ( k ∗ ) ∂ k ∗ ∂ n \frac{\partial y^*}{\partial n}=f'(k^*)\frac{\partial k^*}{\partial n} ∂n∂y∗=f′(k∗)∂n∂k∗
为了求 ∂ k ∗ / ∂ n \partial k^*/\partial n ∂k∗/∂n,我们将平衡增长路径上的等式 s f ( k ∗ ) = ( n + g + δ ) k ∗ sf(k^*)=(n+g+\delta)k^* sf(k∗)=(n+g+δ)k∗两边对n求导
s f ′ ( k ∗ ) ∂ k ∗ ∂ n = ( n + g + δ ) ∂ k ∗ ∂ n + k ∗ sf'(k^*)\frac{\partial k^*}{\partial n}=(n+g+\delta)\frac{\partial k^*}{\partial n}+k^* sf′(k∗)∂n∂k∗=(n+g+δ)∂n∂k∗+k∗
解得
∂ k ∗ ∂ n = k ∗ s f ′ ( k ∗ ) − ( n + g + δ ) \frac{\partial k^*}{\partial n}=\frac{k^*}{sf'(k^*)-(n+g+\delta)} ∂n∂k∗=sf′(k∗)−(n+g+δ)k∗
那么
∂ y ∗ ∂ n = f ′ ( k ∗ ) k ∗ s f ′ ( k ∗ ) − ( n + g
例题:索洛模型——弹性与收敛速度
最新推荐文章于 2025-01-07 07:55:44 发布