例题:索洛模型——弹性与收敛速度

本文探讨了索洛模型中产出y∗关于人口增长率n的弹性计算,展示了如何通过求导来分析弹性,并解释了人口增长率变化对产出的影响。同时,文章还涉及了消费的储蓄弹性,解释了消费恢复到平衡状态所需的时间,揭示了模型中的关键参数如aK(k∗)的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 产出 y ∗ y^* y关于人口增长率 n n n的弹性。
    首先,对 y ∗ = f ( k ∗ ) y^*=f(k^*) y=f(k)两边对 n n n求导数
    ∂ y ∗ ∂ n = f ′ ( k ∗ ) ∂ k ∗ ∂ n \frac{\partial y^*}{\partial n}=f'(k^*)\frac{\partial k^*}{\partial n} ny=f(k)nk
    为了求 ∂ k ∗ / ∂ n \partial k^*/\partial n k/n,我们将平衡增长路径上的等式 s f ( k ∗ ) = ( n + g + δ ) k ∗ sf(k^*)=(n+g+\delta)k^* sf(k)=(n+g+δ)k两边对n求导
    s f ′ ( k ∗ ) ∂ k ∗ ∂ n = ( n + g + δ ) ∂ k ∗ ∂ n + k ∗ sf'(k^*)\frac{\partial k^*}{\partial n}=(n+g+\delta)\frac{\partial k^*}{\partial n}+k^* sf(k)nk=(n+g+δ)nk+k
    解得
    ∂ k ∗ ∂ n = k ∗ s f ′ ( k ∗ ) − ( n + g + δ ) \frac{\partial k^*}{\partial n}=\frac{k^*}{sf'(k^*)-(n+g+\delta)} nk=sf(k)(n+g+δ)k
    那么
    ∂ y ∗ ∂ n = f ′ ( k ∗ ) k ∗ s f ′ ( k ∗ ) − ( n + g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值