模型全参数训练和LoRA微调所需显存的分析

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
在这里插入图片描述

  本文介绍模型全参数训练和LoRA微调所需显存的分析,希望对学习和使用大模型的同学们有所帮助。

1. 前言

  在之前的文章FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析中介绍了不同精度下模型加载所需显存,但除了模型部署以外,大家更关心的是模型训练时所需显存的分析。根据分析后的用量,就能够按照需求使用或者租借相应的GPU资源进行训练了。

  本篇内容为了简单起见,假设模型默认使用的是FP16或者BF16的精度。

2. 全参数训练

  首先将所需显存表示成数学公式,如下所示:</

### Qwen2.5-VL-72B 模型显存需求 对于大型语言模型而言,所需显存量取决于多个因素,包括但不限于参数量、批处理大小以及具体应用场景。针对Qwen2.5-VL-72B这一特定模型,虽然官方并未直接提及该版本的确切显存消耗数值[^1],但从已知信息可以推测其对硬件资源的要求较高。 通常情况下,随着模型规模增大,尤其是达到数十亿参数级别的巨型网络结构,所需显存也会显著增加。考虑到Qwen2.5系列中的较小版本如7B已经建议使用具备48GB显存的RTX 4090 GPU来确保流畅运行[^2],那么拥有超过十倍参数数量级的72B版本显然会需要更强大的计算设备支持。 为了能够顺利加载并训练或推理如此大规模的预训练模型,推荐配置至少具有更高容量显存(远超48G)的工作站级别GPU或多卡分布式系统环境。然而具体的最低要求还需参照官方文档说明获取最准确的数据。 ```python # 示例代码展示如何查询当前可用显存情况(Python) import torch def check_gpu_memory(): if torch.cuda.is_available(): device = 'cuda' total_memory = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3) cached_memory = torch.cuda.memory_reserved() / (1024 ** 3) print(f"Total Memory: {total_memory:.2f} GB") print(f"Allocated Memory: {allocated_memory:.2f} GB") print(f"Cached Memory: {cached_memory:.2f} GB") check_gpu_memory() ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值