19行列式公式、代数余子式

本文详细介绍了行列式的求解方法,包括二阶和三阶行列式的推导过程,以及n阶行列式的公式。重点讲解了代数余子式概念,并通过实例演示了如何运用这些理论计算特定行列式的值。此外,文章还探讨了伴随矩阵及其在行列式计算中的作用。
摘要由CSDN通过智能技术生成

一、行列式求解公式

推导基础:

  1. ∣ I ∣ = 1 \vert I\vert=1 I=1
  2. 行交换将会改变行列式符号
  3. 行列式可以按行拆分
  4. 行列式有一行或者有一列全为0,那么行列式等于0

以上三个性质将会帮助推导行列式的公式。

1.1 二阶行列式推导

∣ a b c d ∣ (1) \left | \begin{matrix} a&b\\c&d \end{matrix} \right|\tag{1} acbd (1)
行列式按照第一行线性拆分有:
∣ a b c d ∣ = ∣ a 0 c d ∣ + ∣ 0 b c d ∣ (2) \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=\left | \begin{matrix} a&0\\c&d \end{matrix} \right|+\left | \begin{matrix} 0&b\\c&d \end{matrix} \right|\tag{2} acbd = ac0d + 0cbd (2)
将分解出来的行列式在进行第二行线性拆分:
∣ a b c d ∣ = ∣ a 0 0 d ∣ + ∣ a 0 c 0 ∣ + ∣ 0 b 0 d ∣ + ∣ 0 b c 0 ∣ (3) \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=\left | \begin{matrix} a&0\\0&d \end{matrix} \right|+\left | \begin{matrix} a&0\\c&0 \end{matrix} \right|+\left | \begin{matrix} 0&b\\0&d \end{matrix} \right|+\left | \begin{matrix} 0&b\\c&0 \end{matrix} \right|\tag{3} acbd = a00d + ac00 + 00bd + 0cb0 (3)
因为第二项和第三项有一列为0,所以是一个奇异矩阵,其行列式为0,所以 ( 3 ) (3) (3)可以写成:
∣ a b c d ∣ = ∣ a 0 0 d ∣ + ∣ 0 b c 0 ∣ (4) \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=\left | \begin{matrix} a&0\\0&d \end{matrix} \right|+\left | \begin{matrix} 0&b\\c&0 \end{matrix} \right|\tag{4} acbd = a00d + 0cb0 (4)
( 4 ) (4) (4)右侧第一项为上三角矩阵,其行列式为 a d ad ad;右侧的行列式可以通过行交换得到 − b c -bc bc,所以:
∣ a b c d ∣ = a d − b c (5) \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=ad-bc\tag{5} acbd =adbc(5)

1.2 三阶行列式推导

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ (6) \left | \begin{matrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23} \\a_{31}&a_{32}&a_{33}\end{matrix} \right|\tag{6} a11a21a31a12a22a32a13a23a33 (6)
按照二阶行列式推导过程,拆开的行列式应该有 3 × 3 × 3 = 27 3\times3\times3=27 3×3×3=27个展开。

怎么样的行列式才不为0?各行各列都保证有一个非0,该项可能不为0。

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∣ a 11 0 0 0 a 22 0 0 0 a 33 ∣ + ∣ a 11 0 0 0 0 a 23 0 a 32 0 ∣ + ∣ 0 a 12 0 a 21 0 0 0 0 a 33 ∣ + ∣ 0 a 12 0 0 0 a 23 a 31 0 0 ∣ + ∣ 0 0 a 13 a 21 0 0 0 a 32 0 ∣ + ∣ 0 0 a 13 0 a 22 0 a 31 0 0 ∣ = a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 22 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 (7) \begin{aligned} \left | \begin{matrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23} \\a_{31}&a_{32}&a_{33}\end{matrix} \right|=& \left | \begin{matrix} a_{11}&0&0\\ 0&a_{22}&0\\ 0&0&a_{33} \end{matrix} \right|+ \left | \begin{matrix} a_{11}&0&0\\ 0&0&a_{23}\\ 0&a_{32}&0 \end{matrix} \right|+\left | \begin{matrix} 0&a_{12}&0\\ a_{21}&0&0\\ 0&0&a_{33} \end{matrix} \right|+ \\\left | \begin{matrix} 0&a_{12}&0\\ 0&0&a_{23}\\ a_{31}&0&0 \end{matrix} \right| +\left | \begin{matrix} 0&0&a_{13}\\ a_{21}&0&0\\ 0&a_{32}&0 \end{matrix} \right| +\left | \begin{matrix} 0&0&a_{13}\\ 0&a_{22}&0\\ a_{31}&0&0 \end{matrix} \right|=&a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{22}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31} \end{aligned}\tag{7} a11a21a31a12a22a32a13a23a33 = 00a31a12000a230 + 0a21000a32a1300 + 00a310a220a1300 = a11000a22000a33 + a110000a320a230 + 0a210a120000a33 +a11a22a33a11a23a32a12a21a33+a12a23a31+a13a22a31+a13a21a32a13a22a31(7)

将公共因子提取出来:
a 11 a 22 a 33 − a 11 a 23 a 32 + a 12 a 23 a 31 + a 13 a 22 a 31 + a 13 a 21 a 32 − a 12 a 22 a 31 = a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) (8) \begin{aligned} a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}+a_{13}a_{22}a_{31}+a_{13}a_{21}a_{32}-a_{12}a_{22}a_{31}&=\\ a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{23}a_{31}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) \end{aligned}\tag{8} a11a22a33a11a23a32+a12a23a31+a13a22a31+a13a21a32a12a22a31a11(a22a33a23a32)+a12(a23a31a23a31)+a13(a21a32a22a31)=(8)

1.2 n阶行列式公式

∣ A ∣ = ∑ n ! ± a 1 α a 2 β a 3 γ ⋯ a n ω (9) \vert A\vert=\sum_{n!} \pm a_{1\alpha} a_{2\beta}a_{3\gamma}\cdots a_{n\omega}\tag{9} A=n!±a1αa2βa3γa(9)
其中 ( α , β , γ , ⋯   , ω ) (\alpha,\beta,\gamma,\cdots,\omega) (α,β,γ,,ω)是自然序列 ( 1 , 2 , 3 , ⋯   , n ) (1,2,3,\cdots,n) (1,2,3,,n)全排列。一个 n n n阶行列式可以拆成 n ! n! n!个行列式的和,这些拆成的行列式的特点:

  • 如果有一列为0,那么这个行列式值为0
  • 绝大多数的元素都为零,只留下 n n n个的可能非零的元素
  • 每一行每一列只有一个可能非零的元素
  • 经过行交换,总能轻易的写出其行列式的值,交换奇数次为负,偶数次为正

第一行的元素记为 1 α 1\alpha 1α α \alpha α表示其在列位置;第二行记为 2 β 2\beta 2β β \beta β表示实际列位置……

例子:根据 n n n阶行列式公式求以下行列式的值。
∣ 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 ∣ \left | \begin{matrix} 0&0&1&1\\0&1&1&0\\1&1&0&0\\1&0&0&1 \end{matrix} \right| 0011011011001001
方法1:行变换成三角矩阵
[ 1 0 0 1 0 1 0 − 1 0 0 1 1 0 0 0 0 ] \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0\\ \end{bmatrix} 1000010000101110
故对应行列式为0

方法二:直接选出行列式不为零的排列,利用行列式公式求解。

容易看出,其实就只能选取两种组合, a 13 a_{13} a13 a 22 a_{22} a22 a 31 a_{31} a31 a 44 a_{44} a44 a 14 a_{14} a14 a 23 a_{23} a23 a 32 a_{32} a32 a 41 a_{41} a41,两者的列序是:3214和4321,前者交换成正常序需要一次,后者需要2次,所以行列式的值为-1+1=0,这个结果与方法1是对应的。

二、代数余子式(Cofactors)

这一点上,同济线代要好一点。下面都是摘录自同济版的线性代数。

n n n阶行列式中,把 ( i , j ) (i,j) (i,j) a i j a_{ij} aij所在的第 i i i行和第 j j j列划去后,留下来的 n − 1 n-1 n1阶叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij,记
A i j = ( − 1 ) i + j M i j (10) A_{ij}=(-1)^{i+j}M_{ij}\tag{10} Aij=(1)i+jMij(10)
A i j A_{ij} Aij叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij的代数余子式。伴随矩阵是有各元素位置被元素对应代数余子式取代后转置后形成的矩阵,也被称为矩阵的转置伴随(adjugate)矩阵,或者叫做经典伴随(classical adjoint)矩阵。

推论:一个 n n n阶行列式,如果其中第 i i i行所有元素除 ( i , j ) (i,j) (i,j) a i j a_{ij} aij外都为零,那么这个行列式等于 a i j a_{ij} aij与它代数余子式的乘积。

关于推论的一个例子:
A = [ 1 0 0 2 3 4 5 6 7 ] A=\begin{bmatrix} 1&0&0\\ 2&3&4\\ 5&6&7 \end{bmatrix} A= 125036047
第一行除了1外其他元素都为0,其行列式等于代数这个元素乘以其代数余子式:
∣ A ∣ = 1 1 + 1 ∣ 3 4 5 6 ∣ = − 3 \vert A \vert=1^{1+1}\left |\begin{matrix}3&4\\5&6\end{matrix}\right|=-3 A=11+1 3546 =3

重要定理:行列式等于它的一行(列)的各元素与其对应代数余子式的乘积之和,即:
D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in} D=ai1Ai1+ai2Ai2++ainAin
这个定理也被称为行列式按行(列)展开法则。

在这节课最后一点时间,提到了一种特殊的行列式:三对角行列式
A 4 = ∣ 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 ∣ A_4=\left|\begin{matrix}1&1&0&0\\1&1&1&0\\0&1&1&1\\0&0&1&1\end{matrix}\right| A4= 1100111001110011
A i A_i Ai表示从左上角的 i i i阶方阵,根据定义容易知道:

∣ A 1 ∣ = 1 \vert A_{1}\vert=1 A1=1 ∣ A 2 ∣ = 0 \vert A_{2}\vert=0 A2=0 ∣ A 3 ∣ = − 1 \vert A_{3 }\vert=-1 A3=1 ∣ A 4 ∣ = 1 \vert A_4\vert =1 A4=1

使用代数余子式展开来看一下 ∣ A 4 ∣ \vert A_4\vert A4的计算:
( − 1 ) 1 + 1 ∣ 1 1 0 1 1 1 0 1 1 ∣ + ( − 1 ) 1 + 2 ∣ 1 1 0 0 1 1 0 1 1 ∣ = ∣ A 3 ∣ − ∣ A 2 ∣ (-1)^{1+1}\left|\begin{matrix}1&1&0\\1&1&1\\0&1&1\end{matrix}\right|+(-1)^{1+2}\left|\begin{matrix}1&1&0\\0&1&1\\0&1&1\end{matrix}\right|=\vert A_{3}\vert -\vert A_{2}\vert (1)1+1 110111011 +(1)1+2 100111011 =A3A2
事实上, ∣ A n ∣ = ∣ A n − 1 ∣ − ∣ A n − 2 ∣ \vert A_n\vert =\vert A_{n-1}\vert -\vert A_{n-2}\vert An=An1An2


【1】补充了伴随矩阵的概念

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值