博弈论Lecture1

本文深入探讨了博弈论中的关键概念,包括决策者、选择、目标函数以及均衡策略。通过不同的案例,如囚徒困境、鸡游戏、足球罚球等,展示了离散游戏的均衡点和最优决策。同时,文章还讨论了连续分布函数在决策分析中的应用,分析了如何在不确定性和变化中寻找最优解。最后,提到了盈利问题的连续决策过程,强调最大化利润的方法。
摘要由CSDN通过智能技术生成

决策

三要素:谁(一个/多个);什么选择(choice,离散或连续);决策结果(objective functions)
多个决策者和一个objective->game
DMs-> players;
决策选项->strategies;
objective functions->payoff functions

离散例子

1 监狱dilemma
两人偷盗,给了boss,没有抓到证据,现审问二人,在不能互相交流的情况下,坦白/不坦白,给出 ϕ 1 , ϕ 2 \phi_{1},\phi_{2} ϕ1,ϕ2表格:

1/2NCC
NC(-2,-2)(-10,-1)
C(-1,-10)(-5,-5)

负值代表不好的payoff,在二人不能交流的情况下,(-5,-5)是最好的选择,因为-5不会有incentive变成-10,而其他都有变化的可能,例如-2->-1;-10->-5…
2 Chiken 游戏
狭路相逢,是否让道的问题

1/2C C̸ \not C C
C(3,3)(2,4)
C̸ \not C C(4,2)(1,1)

(2,4),(4,2)为equilibrium(equilibria)(3,3)的3会有incentive变成4,(1,1)的1可能变成2,不是equilibrium
Equilibria: each of them is the best response against the other player’s choice.
3 足球罚球
守门员(L,R);踢球人(L,R)
进球的概率
ϕ 2 = 100 − ϕ 1 \phi _{2} = 100-\phi_{1} ϕ2=100ϕ1相当于和zero-sum game,无equilibrium
4 足球罚球2
(L,R,M)
1 -1 -1
-1 1 -1
-1 -1 1
ϕ 1 和 ϕ 2 为 − 11 相 反 \phi_{1}和\phi_{2}为-1 1相反 ϕ1ϕ211 无equilibrium
5 扔硬币
1 -1
-1 1
ϕ 2 = − ϕ 1 \phi_{2} = -\phi_{1} ϕ2=ϕ1 无equilibrium(无在行方向最小 列最大的值)
5 通常的两人的离散游戏(zero sum)
{1,…,m}{1,…,n}
ϕ 1 ( i , j ) = a i , j , ϕ 2 ( i , j ) = − a i , j \phi_{1}(i,j) = a_{i,j}, \phi _{2}(i,j) =-a_{i,j} ϕ1(i,j)=ai,j,ϕ2(i,j)=ai,j
a i j a_{ij} aij是equilibrium 等价于

  • a i , j a_{i,j} ai,j a 1 , j . . . . , a i , j , . . . . a m , j 中 的 最 大 值 a_{1,j}....,a_{i,j},....a_{m,j}中的最大值 a1,j....,ai,j,....am,j 列方向最大
  • − a i j 是 − a i 1 , . . . . , − a i , j , . . . . − a i n 的 最 大 值 -a_{ij}是-a{i1},....,-a_{i,j},....-a_{in}的最大值 aijai1,....,ai,j,....ain 负号去掉,行方向最小
    为saddle point

6 独立同分布连续分布函数,有equilibrium的可能性分析(离散不适用)
若 a 11 是 e q u l . , 行 最 小 列 最 大 , 则 a m 1 , . . . . , a 21 , a 11 , a 12 , . . . . a 1 n 若a_{11}是equl., 行最小列最大,则a_{m1},....,a_{21},a_{11},a_{12},....a_{1n} a11equl.am1,....,a21,a11,a12,....a1n
a m 1 , . . . . , a 21 内 部 大 小 排 序 组 合 有 ( m − 1 ) ! , 同 理 , 右 边 的 组 合 有 ( n − 1 ) ! 种 a_{m1},....,a_{21}内部大小排序组合有(m-1)!,同理,右边的组合有(n-1)!种 am1,....,a21(m1)!,(n1)!
通常情况,再乘m*n(a11是equl.)
P ( e q u l i . 存 在 ) = m n ( m − 1 ) ! ( n − 1 ) ! ( m + n − 1 ) ! P(equli.存在) = mn \frac{(m-1)!(n-1)!}{(m+n-1)!} P(equli.)=mn(m+n1)!(m1)!(n1)!

7 盈利问题(连续)
ϕ 1 , ϕ 2 使 最 大 \phi_{1},\phi_{2}使最大 ϕ1,ϕ2使
数量乘价格-成本(cost为变量)
成 本 C k = x k + 1 写 出 ϕ 1 求 导 找 最 大 , 同 理 可 求 出 最 大 ϕ 2 , 联 立 得 最 佳 x 1 , x 2 成本C_{k}= x_{k}+1 写出\phi _{1} 求导找最大,同理可求出最大\phi_{2},联立得最佳x_{1},x_{2} Ck=xk+1ϕ1ϕ2x1,x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值