决策
三要素:谁(一个/多个);什么选择(choice,离散或连续);决策结果(objective functions)
多个决策者和一个objective->game
DMs-> players;
决策选项->strategies;
objective functions->payoff functions
离散例子
1 监狱dilemma
两人偷盗,给了boss,没有抓到证据,现审问二人,在不能互相交流的情况下,坦白/不坦白,给出
ϕ
1
,
ϕ
2
\phi_{1},\phi_{2}
ϕ1,ϕ2表格:
1/2 | NC | C |
---|---|---|
NC | (-2,-2) | (-10,-1) |
C | (-1,-10) | (-5,-5) |
负值代表不好的payoff,在二人不能交流的情况下,(-5,-5)是最好的选择,因为-5不会有incentive变成-10,而其他都有变化的可能,例如-2->-1;-10->-5…
2 Chiken 游戏
狭路相逢,是否让道的问题
1/2 | C | C̸ \not C C |
---|---|---|
C | (3,3) | (2,4) |
C̸ \not C C | (4,2) | (1,1) |
(2,4),(4,2)为equilibrium(equilibria)(3,3)的3会有incentive变成4,(1,1)的1可能变成2,不是equilibrium
Equilibria: each of them is the best response against the other player’s choice.
3 足球罚球
守门员(L,R);踢球人(L,R)
进球的概率
ϕ
2
=
100
−
ϕ
1
\phi _{2} = 100-\phi_{1}
ϕ2=100−ϕ1相当于和zero-sum game,无equilibrium
4 足球罚球2
(L,R,M)
1 -1 -1
-1 1 -1
-1 -1 1
ϕ
1
和
ϕ
2
为
−
11
相
反
\phi_{1}和\phi_{2}为-1 1相反
ϕ1和ϕ2为−11相反 无equilibrium
5 扔硬币
1 -1
-1 1
ϕ
2
=
−
ϕ
1
\phi_{2} = -\phi_{1}
ϕ2=−ϕ1 无equilibrium(无在行方向最小 列最大的值)
5 通常的两人的离散游戏(zero sum)
{1,…,m}{1,…,n}
ϕ
1
(
i
,
j
)
=
a
i
,
j
,
ϕ
2
(
i
,
j
)
=
−
a
i
,
j
\phi_{1}(i,j) = a_{i,j}, \phi _{2}(i,j) =-a_{i,j}
ϕ1(i,j)=ai,j,ϕ2(i,j)=−ai,j
a
i
j
a_{ij}
aij是equilibrium 等价于
- a i , j a_{i,j} ai,j 是 a 1 , j . . . . , a i , j , . . . . a m , j 中 的 最 大 值 a_{1,j}....,a_{i,j},....a_{m,j}中的最大值 a1,j....,ai,j,....am,j中的最大值 列方向最大
-
−
a
i
j
是
−
a
i
1
,
.
.
.
.
,
−
a
i
,
j
,
.
.
.
.
−
a
i
n
的
最
大
值
-a_{ij}是-a{i1},....,-a_{i,j},....-a_{in}的最大值
−aij是−ai1,....,−ai,j,....−ain的最大值 负号去掉,行方向最小
为saddle point
6 独立同分布连续分布函数,有equilibrium的可能性分析(离散不适用)
若
a
11
是
e
q
u
l
.
,
行
最
小
列
最
大
,
则
a
m
1
,
.
.
.
.
,
a
21
,
a
11
,
a
12
,
.
.
.
.
a
1
n
若a_{11}是equl., 行最小列最大,则a_{m1},....,a_{21},a_{11},a_{12},....a_{1n}
若a11是equl.,行最小列最大,则am1,....,a21,a11,a12,....a1n
a
m
1
,
.
.
.
.
,
a
21
内
部
大
小
排
序
组
合
有
(
m
−
1
)
!
,
同
理
,
右
边
的
组
合
有
(
n
−
1
)
!
种
a_{m1},....,a_{21}内部大小排序组合有(m-1)!,同理,右边的组合有(n-1)!种
am1,....,a21内部大小排序组合有(m−1)!,同理,右边的组合有(n−1)!种
通常情况,再乘m*n(a11是equl.)
P
(
e
q
u
l
i
.
存
在
)
=
m
n
(
m
−
1
)
!
(
n
−
1
)
!
(
m
+
n
−
1
)
!
P(equli.存在) = mn \frac{(m-1)!(n-1)!}{(m+n-1)!}
P(equli.存在)=mn(m+n−1)!(m−1)!(n−1)!
7 盈利问题(连续)
ϕ
1
,
ϕ
2
使
最
大
\phi_{1},\phi_{2}使最大
ϕ1,ϕ2使最大
数量乘价格-成本(cost为变量)
成
本
C
k
=
x
k
+
1
写
出
ϕ
1
求
导
找
最
大
,
同
理
可
求
出
最
大
ϕ
2
,
联
立
得
最
佳
x
1
,
x
2
成本C_{k}= x_{k}+1 写出\phi _{1} 求导找最大,同理可求出最大\phi_{2},联立得最佳x_{1},x_{2}
成本Ck=xk+1写出ϕ1求导找最大,同理可求出最大ϕ2,联立得最佳x1,x2