Python环境下基于机器学习的空压机故障识别(出口阀泄漏等)

194 篇文章 1 订阅
126 篇文章 49 订阅
本文介绍了一项在Python环境中,利用机器学习算法(如多层感知机、决策树、随机森林、高斯过程、AdaBoost和朴素贝叶斯)对空压机(涉及出口阀泄漏、止逆阀泄露等7种故障)的声信号进行特征提取和故障分类的研究。研究者展示了如何通过数据预处理、特征选择和模型优化来提高故障识别的准确性。
摘要由CSDN通过智能技术生成

Python环境下基于机器学习(多层感知机,决策树,随机森林,高斯过程,AdaBoost,朴素贝叶斯)的压缩机故障识别(出口阀泄漏,止逆阀泄露,轴承损伤,惯性轮损伤,活塞损伤,皮带损伤等)。

空压机是一种经典的动力设备,也被誉为企业产品生产的"生命气源",,广泛应用于制药工业、爆破采煤、矿上通风、风动实验等众多领域。空压机的工作机理是通过利用旋转电机的机械能对气体进行挤压,从而使得气体能够产生巨大的能量,利用充满能量的气体进行一些爆破、通风等作业,从而满足现实中的使用需求。

本项目使用声信号检测空压机的 7 种故障,分别为出口阀泄漏Leakage Outlet Valve(LOV),入口阀泄露Leakage Inlet Valve(LIV),止逆阀泄露Non-Return Valve(NRV),轴承损伤Bearing,惯性轮损伤Flywheel,活塞损伤Piston,皮带损伤Riderbelt和健康状态。经过特征提取后,利用各种机器学习算法对空压机故障进行分类,试验台如下:

所测得的声信号以Flywheel为例

接下来开始步入正题,由于代码包含众多模块,为了避免篇幅过长,只写主函数。提取的特征可以选择维数是否约简,分类器也可选择是否进行参数优化(粒子群算法,pip install pyswarm),代码必要的标注都有了,也比较容易看懂。

import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

MaxExpNo=10
counter=-1
#标签
labels=['Bearing','Flywheel','Healthy','LIV','LOV','NRV','Piston','Riderbelt']
import PrimaryStatFeatures  #特征提取模块
import FFT_Module  #FFT变换
#所要提取的特征
data_columns_PrimaryStatFeatures=['Mean','Min','Max','StdDv','RMS','Skewness','Kurtosis','CrestFactor','ShapeFactor']
data_columns_Target=['Fault']
Faults={labels[0]:int(0),labels[1]:int(1),labels[2]:int(2),labels[3]:int(3),labels[4]:int(4),labels[5]:int(5),labels[6]:int(6),labels[7]:int(7)}
for label in labels:
    for ExpNo in range(1,MaxExpNo+1):
        counter+=1
        file='Data\\'+label+'\\preprocess_Reading'+str(ExpNo)+'.txt'
        X=np.loadtxt(file,delimiter=',')
        if (counter%10==0): print('Lading files: ',str(counter/(len(labels)*MaxExpNo)*100),'% completed')
        StatFeatures=PrimaryStatFeatures.PrimaryFeatureExtractor(X)
        FFT_Features,data_columns_FFT_Features=FFT_Module.FFT_BasedFeatures(X)
        data_columns=data_columns_PrimaryStatFeatures+data_columns_FFT_Features+data_columns_Target
        if (label==labels[0] and ExpNo==1): data=pd.DataFrame(columns=data_columns)
        StatFeatures[0].extend(FFT_Features)
        StatFeatures[0].extend([Faults[label]])
        df_temp=pd.DataFrame(StatFeatures,index=[counter],columns=data_columns)
        data=data.append(df_temp)

input_data=data.drop(columns=['Fault'])
#数据标准化处理
#参考: http://benalexkeen.com/feature-scaling-with-scikit-learn/
from sklearn import preprocessing
normalization_status='RobustScaler'   
''' Choices:
                                        1. Normalization
                                        2. StandardScaler
                                        3. MinMaxScaler
                                        4. RobustScaler
                                        5. Normalizer
                                        6. WithoutNormalization   '''
input_data_columns=data_columns_PrimaryStatFeatures+data_columns_FFT_Features

if (normalization_status=='Normalization'):
    data_array=preprocessing.normalize(input_data,norm='l2',axis=0)
    input_data=pd.DataFrame(data_array,columns=input_data_columns)
elif (normalization_status=='StandardScaler'):
    scaler = preprocessing.StandardScaler()
    scaled_df = scaler.fit_transform(input_data)
    input_data = pd.DataFrame(scaled_df, columns=input_data_columns)
elif (normalization_status=='MinMaxScaler'):
    scaler = preprocessing.MinMaxScaler()
    scaled_df = scaler.fit_transform(input_data)
    input_data = pd.DataFrame(scaled_df, columns=input_data_columns)
elif (normalization_status=='RobustScaler'):
    scaler = preprocessing.RobustScaler()
    scaled_df = scaler.fit_transform(input_data)
    input_data = pd.DataFrame(scaled_df, columns=input_data_columns)
elif (normalization_status=='Normalizer'):
    scaler = preprocessing.Normalizer()
    scaled_df = scaler.fit_transform(input_data)
    input_data = pd.DataFrame(scaled_df, columns=input_data_columns)
elif (normalization_status=='WithoutNormalization'):
    print ('No normalization is required')

target_data=pd.DataFrame(data['Fault'],columns=['Fault'],dtype=int)

DimReductionStatus=False
if (DimReductionStatus==True):
    for nComponents in range(1,110):
        #降维
        #主成分分析
        from sklearn import decomposition
        pca = decomposition.PCA(n_components=nComponents)
        pca.fit(input_data)
        input_data_reduced = pca.transform(input_data)
        
        #训练集和测试集划分
        from sklearn.model_selection import train_test_split
        x_train,x_test,y_train,y_test=train_test_split(input_data_reduced,target_data,test_size=0.3,random_state=42,stratify=target_data)
    
        #使用 KNN(K 最近邻)训练
        import KNN_Classifier
    
        test_accuracy_max=KNN_Classifier.KNNClassifier(x_train,x_test,y_train,y_test)
        plt.figure(10)
        plt.scatter(nComponents,test_accuracy_max)
        plt.xlabel('Number of utilized components based on PCA')
        plt.ylabel('Test Accuracy')
    
        #使用 SVC(支持向量分类器)进行训练
        import SVC_Classifier
        test_accuracy_max=SVC_Classifier.SVCClassifier(x_train,x_test,y_train,y_test)
        plt.figure(11)
        plt.scatter(nComponents,test_accuracy_max)
else:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(input_data,target_data,test_size=0.3,random_state=42,stratify=target_data)

#使用决策树进行训练
import DT_Classifier
DT_Classifier.DTClassifier(x_train,x_test,y_train,y_test)

from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

#写入最佳分类器参数
file1 = open('Optimized Parameters for Classifiers.txt','w')
print('\nThis file contains the output optimized parameters for different classifiers\n\n\n',file=file1)

#分类器参数优化
#*************************************
SVMOptStatus=True
KNNOptStatus=True
MLPOptStatus=True
DTOptStatus=True
import CLFOptimizer
#pip install pyswarm
#优化 SVC 参数
if (SVMOptStatus==True):
    SVM_kernels = ['linear','poly','rbf','sigmoid']
    for KernelType in SVM_kernels:
        print('\n\nstage: Optimizing SVC:',KernelType)
        SVCParams_opt,SVCAccuracy_opt=CLFOptimizer.SVCOPT(KernelType,x_train,x_test,y_train,y_test)
        print('\nClassifier: SVC-',KernelType,', Gamma=',SVCParams_opt[0],', PenaltyPrameter=',SVCParams_opt[1],', Test Acuuracy=',SVCAccuracy_opt,file=file1)

#优化 KNN 参数
if (KNNOptStatus==True):
    print('\n\nstage: Optimizing KNN')
    KNNParams_opt,KNNAccuracy_opt=CLFOptimizer.KNNOPT(x_train,x_test,y_train,y_test)
    print('\nClassifier: KNN, n_neighbors=',KNNParams_opt,', Test Acuuracy=',KNNAccuracy_opt,file=file1)

#优化 MLP 分类器
if (MLPOptStatus==True):
    print('\n\nstage: Optimizing MLP')
    MLPParams_opt,MLPAccuracy_opt=CLFOptimizer.MLPOPT(x_train,x_test,y_train,y_test)
    print('\nClassifier: MLP, hidden_layer_sizes=(',MLPParams_opt[0],',',MLPParams_opt[1],',',MLPParams_opt[2],'), Test Acuuracy=',MLPAccuracy_opt,file=file1)

#优化决策树分类器
if (DTOptStatus==True):
    print('\n\nstage: Optimizing Decision Tree')
    DTParams_opt,DTAccuracy_opt=CLFOptimizer.DTOPT(x_train,x_test,y_train,y_test)
    print('\nClassifier: Decision Tree, max_depth=',DTParams_opt[0],', min_samples_split=',DTParams_opt[1],', min_samples_leaf=',DTParams_opt[2],', Test Acuuracy=',DTAccuracy_opt,file=file1)

file1.close()

#生成分类器名称及其配置
classifiers=[]
CLFnames=[]

CLFnames= CLFnames + ["SVC-linear","K-Nearest Neighbors","Multi-Layer Perceptron",
         "Decision Tree", "Random Forest", "Gaussian Process", "AdaBoost",
         "Naive Bayes", "QDA"]

#classifiers=classifiers+ [
#    SVC(kernel='linear',gamma=1.785,C=3.463),
#    KNeighborsClassifier(n_neighbors=3),
#    MLPClassifier(hidden_layer_sizes=(28,34,80,),alpha=1),
#    DecisionTreeClassifier(),
#    RandomForestClassifier(),
#    GaussianProcessClassifier(1.0 * RBF(1.0)),
#    AdaBoostClassifier(),
#    GaussianNB(),
#    QuadraticDiscriminantAnalysis()]

classifiers=classifiers+ [
    SVC(),
    KNeighborsClassifier(),
    MLPClassifier(),
    DecisionTreeClassifier(),
    RandomForestClassifier(),
    GaussianProcessClassifier(),
    AdaBoostClassifier(DecisionTreeClassifier(),n_estimators=1000,learning_rate=1),
    GaussianNB(),
    QuadraticDiscriminantAnalysis()]

#将分类结果写入文件
f = open('ClassificationResults.txt','w')
print('\nThis file contains an overall comparison of different classifiers performance\n\n\n',file=f)
import ClassificationModule
ClassificationModule.Classifiers(CLFnames,classifiers,x_train,x_test,y_train,y_test)

分类器优化参数结果

This file contains the output optimized parameters for different classifiers

Classifier: SVC- linear , Gamma= 1.61614372336136 , PenaltyPrameter= 6.455613795161285 , Test Acuuracy= 1.0

Classifier: SVC- poly , Gamma= 0.02472261261696812 , PenaltyPrameter= 8.084311259878596 , Test Acuuracy= 0.875

Classifier: SVC- rbf , Gamma= 0.003211151769260453 , PenaltyPrameter= 3.2794598503610994 , Test Acuuracy= 0.9583333333333334

Classifier: SVC- sigmoid , Gamma= 0.001 , PenaltyPrameter= 9.44412249946835 , Test Acuuracy= 1.0

Classifier: KNN, n_neighbors= 3 , Test Acuuracy= 0.875

Classifier: MLP, hidden_layer_sizes=( 19.0 , 97.0 , 14.0 ), Test Acuuracy= 1.0

Classifier: Decision Tree, max_depth= 2121.0 , min_samples_split= 6.0 , min_samples_leaf= 4.0 , Test Acuuracy= 1.0

Training accuracy for SVC-linear is: 0.9642857142857143 and Prediction accuracy is: 0.875

Training accuracy for K-Nearest Neighbors is: 0.8928571428571429 and Prediction accuracy is: 0.7916666666666666

分类结果

Training accuracy for Multi-Layer Perceptron is: 1.0 and Prediction accuracy is: 0.9583333333333334

Training accuracy for Decision Tree is: 1.0 and Prediction accuracy is: 0.7916666666666666

Training accuracy for Random Forest is: 1.0 and Prediction accuracy is: 0.9583333333333334

Training accuracy for Gaussian Process is: 1.0 and Prediction accuracy is: 0.8333333333333334

Training accuracy for AdaBoost is: 1.0 and Prediction accuracy is: 0.9583333333333334

Training accuracy for Naive Bayes is: 1.0 and Prediction accuracy is: 0.9166666666666666

Training accuracy for QDA is: 1.0 and Prediction accuracy is: 0.3333333333333333

完整代码可通过知乎学术咨询获得:

Python环境下基于机器学习的空压机故障识别

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  • 30
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值