arima模型 p q d 确定_时间序列中p,d,q的确定

本文介绍了如何确定ARIMA模型中的p、d、q参数,强调了时间序列平稳性的重要性。通过分析自相关图(ACF)和偏自相关图(PACF),结合2倍标准差原则来判断截尾和拖尾,从而选择合适的模型。此外,还提到了利用R语言的auto.arima函数辅助定阶及AIC和BIC准则选择最优模型。
摘要由CSDN通过智能技术生成

92dd563b741cca8166e7d21dbc06b64f.png

最近做了一个公众号粉丝数量增长预测,用到了ARIMA模型,本科虽然学过但始终是止于皮毛,很多东西并没有真正理解,借此机会也重新学习了一遍。

时间序列其实就是按照时间的顺序把随机事件变化发展过程记录下来,并对它进行观察、研究,寻找变化发展的规律,预测它将来的走势。所以说,ARMA模型就是拿来预测。而ARIMA模型与ARMA模型唯一的区别就在时间序列是否平稳,如果不平稳,则需要做一、二三或者更多阶差分,直到序列平稳,这个差分的阶数就是ARIMA模型中的d的值。

一来就说平稳,那就说到我们的第一个要点,时间序列的平稳性。

平稳的判定其实非常简单,概念都不用说,就是你做出来的时序图是否在一个确定的值上下波动。当然,我们还可以进一步根据自相关图与偏自相关图来判断序列是否平稳。

194c76ca1901f15cc0c1299590e641d6.png
比如这就不是一个平稳的时间序列,它有明显的上升趋势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值