最近做了一个公众号粉丝数量增长预测,用到了ARIMA模型,本科虽然学过但始终是止于皮毛,很多东西并没有真正理解,借此机会也重新学习了一遍。
时间序列其实就是按照时间的顺序把随机事件变化发展过程记录下来,并对它进行观察、研究,寻找变化发展的规律,预测它将来的走势。所以说,ARMA模型就是拿来预测。而ARIMA模型与ARMA模型唯一的区别就在时间序列是否平稳,如果不平稳,则需要做一、二三或者更多阶差分,直到序列平稳,这个差分的阶数就是ARIMA模型中的d的值。
一来就说平稳,那就说到我们的第一个要点,时间序列的平稳性。
平稳的判定其实非常简单,概念都不用说,就是你做出来的时序图是否在一个确定的值上下波动。当然,我们还可以进一步根据自相关图与偏自相关图来判断序列是否平稳。