一阶系统单位阶跃响应的特点_反馈控制系统的性能

本文探讨了控制系统对单位阶跃信号的响应,重点关注了一阶和二阶系统的性能。二阶系统在欠阻尼情况下的阶跃响应特性包括上升时间、峰值时间和超调量。系统的响应速度与逼近预期响应的程度存在冲突,阻尼比和系统频率影响这些性能指标。此外,高阶系统可以通过二阶系统近似分析,并通过观测调节期间的振荡次数来识别阻尼。对于反馈控制系统,稳态误差取决于开环传递函数的积分器数量,而系统型数与跟踪误差直接相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

控制系统本质上是时域系统

常见的标准测试信号有单位脉冲信号(测试系统对冲击的抵抗能力),阶跃信号(测试系统对输入的响应能力),斜坡信号和抛物线信号(测试系统对一阶和二阶轨迹的跟随能力)。

二阶系统的性能

一个典型的二阶系统如图所示

89c03a555e95345d03e5e343103ee028.png

输入输出关系为

b40a7ea9fac48735d25a1eb4d1c688c3.png

考虑单位脉冲函数的输入(拉普拉斯变换为1),系统输出为

44cac249c6b7809c1e7bac02b79d7d87.png

对应的瞬态响应为

51c1ac2a55ede60361b56bfe91154e6b.png

二阶控制系统的典型阶跃响应如下图所示(欠阻尼系统)

785fb3802e2c8243038a7b398c9f1f13.png

系统的瞬态响应性能主要体现在以下两个方面

  • 响应的快速性:由上升时间和峰值时间表征
  • 实际相应对预期响应的逼近程度:由超调量和调节时间表征

这些量的计算公式如下,通过公式可以看到系统瞬态响应性能的两个方面是相互冲突的。

b25778728619a061da4b084bfdfb1338.png
调节时间(误差为2%时,近似表达)

71d452bdf6e9d4a426110c1e63ef0cfb.png

625b3d5216decbdc096cd16d5a42566e.png
峰值时间

eaa6e62ab176c4155b0519f26bee3aeb.png
上升时间(近似表达)

一些结论:

  • 误差要求为2%时,调节时间约为时间常数的4倍
  • 阻尼比越大,超调量越小-->系统对乐器响应的逼近程度越好;同时峰值时间增加-->系统响应的快速性减弱
  • 给定阻尼比,当系统频率增加时,系统响应变快,且超调量不变
  • 给定系统频率,阻尼比越小,系统响应速度越快,但是逼近程度减小

高阶系统的简化分析

  • 具有一堆主导极点的高阶系统,可用和高阶系统具有相同主导极点的二阶系统近似,以避免复杂的运算。
  • 系统同时收到零点的影响,具有零点的二阶及更高阶的系统需要另行分析

系统阻尼的简单辨识

二阶系统在调节时间内可观测到的振荡的次数约为

800e24064dec04fbaf5aabeef34c086d.png

可以以此来对系统阻尼进行粗略辨识。


反馈控制系统的稳态误差

忽略测量噪声和干扰信号时,单位负反馈系统的跟踪误差为

885c6721109075fd672fb717a89ba897.png

由终值定理得,稳态跟踪误差为

5882206a6a75f64501257e10aeaa6c58.png

可以看到,稳态误差完全由开环传递函数决定。

若开环传递函数中有N个积分器,则该系统得型数为N

可将阶跃信号视为0次曲线,斜坡信号视为1次曲线,抛物线信号视为2次曲线。

若系统型数大于信号的次幂数,则系统稳态误差为0,若系统型数等于信号的次幂数,则系统稳态误差为常数;若系统型数小于信号的次幂数,则系统稳态误差为无穷大

对应关系如下表。该表中阶跃响应的稳态误差和其他两个信号不同,因为阶跃信号不连续

f321ee031e71740e64f0da6d249515bd.png

位置误差常数、速度误差常数和加速度误差常数很有规律,分别为

d3083dab42d9467efae4a7119e935c5f.png
位置误差常数

31a011f7148cc6772ccd1beb1422cb62.png
速度误差常数

26dc25674e7863f1f20e1071de9bb11b.png
加速度误差常数

综合性能指标

综合性能指标包括误差平方积分指标,误差绝对值积分指标,时间误差积积分指标,时间误差平方积积分指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值