postgwas r语言_R语言功效分析

本文介绍了使用R语言进行功效分析,包括t检验、方差分析、相关性、线性模型等多种统计检验的功效计算,强调了样本大小、显著性水平和效应值在功效分析中的重要性,并提供了具体的R代码示例。
摘要由CSDN通过智能技术生成

样本大小:指实验设计中每种条件/组中观测的数目;

显著性水平(alpha):由I型错误的概率来定义,可看做是发现效应不发生的概率;

功效:通过1减去二型错误的概率来定义,即真实效应发生的概率;

效应值:指在重力备择或研究假设下效应的量。

1、用pwr包做功效分析

pwr包中的函数

函数

功效计算的对象

pwr.2p.test()

两比例(n相等)

pwr.2p2n.test()

两比例(n不相等)

pwr.anova.test()

平衡的单因素ANOVA

pwr.chisq.test()

卡方检验

pwr.f2.test()

广义线性模型

pwr.p.test()

比例(单样本)

pwr.r.test()

相关系数

pwr.t.test()

t检验(单样本、两样本、配对)

pwr.t2n.test()

t检验(n不相等的两样本)

(1)t检验问题一:

反应时间有1.25的偏差,反应时间1s的差值是巨大的差异,可设定要检测的效应值为d=1/1.25=0.8或更大。若差异存在,则希望有90%的把握检测到它,因随机变异性的存在,也希望有95%的把握不会误报差异显著,对于该研究坱要多少受试者呢?

library(pwr)

pwr.t.test(d=.8,sig.level=0.05,power=.9,type="two.sample",alternative="two.sided")

a4c26d1e5885305701be709a3d33442f.png

每组中需要34个受试者(总共68人),这样才能保证有90%的把握检测到0.8的效应值,并且最多

5%的可能性会误报差异存在。

(2)t检验问题二:

若检测到总体均值0.5个标准差的差异,且将误报差异的几率限制在1%内,另,获得的受试者只有40个,则该研究中,能检测到这么大总体均值差异的概率是多少?

pwr.t.test(n=20,d=.5,sig.level=.01,type="two.sample",alternative="two.sided")

a4c26d1e5885305701be709a3d33442f.png

结果表明,在0.01的先验显

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值