【软件介绍】GWAS meta分析软件:METAL
Meta-analysis是对多个GWAS分析结果进行综合评价。METAL是GWAS meta分析最常用的工具之一,说明文档见:METAL_Documentation
该软件的安装非常简单,直接下载编译好的二进制文件即可,安装过程如下:
wget http://csg.sph.umich.edu/abecasis/metal/download/Linux-metal.tar.gz
tar xzvf Linux-metal.tar.gz
cd generic-metal/
在安装目录,有一个名为metal
的可执行文件,该程序用法很简单,只需要编写一个配置文件,然后执行即可,所以关键在于配置文件的编写。在软件的安装目录,有一个名为example
的文件夹,提供了两个示例,其中的metal.txt
就是配置文件。
基本应用介绍:
1. 输入文件的分隔符:
METAL希望将每组结果汇总在一个表中。此表必须存储在文本文件中,但METAL在列分隔符、列标题等细节方面非常灵活。这确实意味着在进行meta分析之前需要的基本信息是每个输入文件的描述。应该指定的第一件事就是列分隔符。默认情况下,METAL假定列由空格 (由空格和制表符的任意组合组成) 分隔。也可以进行指定:
SEPARATOR WHITESPACE # 默认
SEPARATOR COMMA # 用于在某些平台流行的以逗号分隔的文件
SEPARATOR TAB # 由单个制表符分隔的列,因此连续的制表符表示空列
2. 软件支持以下两种meta分析的算法:
1) pvalue
2) standard error
第一种是基于p值;第二种是基于标准误,我们知道标准误指的是某个统计量的分布,在使用第二种算法时,需要提供对应的统计量,即Effect, 以逻辑回归/线性回归为例,Effect对应的就是回归系数BETA, 标准误对应的就是回归系数的SE。
每种算法要求的gwas分析结果的格式稍有不同,其中以下3列是必须有的:
1) SNP对应的id或者rs号
2) test allele
3) other allele
在关联分析的结果中,会有OR值来表征关联强弱,而OR值是一个比值,分子除以分母,分子对应的allele为test allele, 分母对应的allele为other allele。
2.1 基于pvalue的算法,额外要求以下3列
1) Pvalue
2) 效应方向:表示test allele和疾病关联方向的列,有正相关和负相关两种,以OR值为例,大于1为危险因素,小于1为保护因素,为了能够区分正负,OR值需要取log。
3) 可选的列:表示样本的大小,根据每个数据集的样本大小来进行加权
2.2 基于标准误的算法,额外要求以下2列
1) effect
2) standard error
前文已经给过解释,effect对应回归分析中的回归系数beta值,standard error对应回归系数的SE。
在配置文件中,需要指定每个study的GWAS结果中上述列对应的标题,以及文件分隔符等选项,这样才能保证软件正确的识别所需的信息,一个配置文件 (文件名:metal.config.txt ) 的示例如下:
# (1) 第一个study的GWAS结果
# MARKER 指定SNP ID对应的列标题
# ALLELE 指定test allele和other allele对应的列标题
# PVALUE 指定P值对应的列标题
# EFFECT 指定效应方向对应的列标题