Infrared Patch-Image Model for Small Target Detection in a Single Image
原文:Infrared Small Target Detection by Density Peaks Searching and Maximum-Gray Region Growing
红外图像模型:
f D ( x , y ) = f T ( x , y ) + f B ( x , y ) + f N ( x , y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) f_D(x,y)=f_T(x,y)+f_B(x,y)+f_N(x,y) ......................................(1) fD(x,y)=fT(x,y)+fB(x,y)+fN(x,y)......................................(1)
其中 f D f_D fD、 f T f_T fT、 f B f_B fB、 f N f_N fN 和 ( x , y ) (x,y) (x,y) 分别为原始红外图像、目标图像、背景图像、随机噪声图像和像素位置。根据焦点是否在目标图像 f T f_T fT ,背景图像 f B f_B fB 或两者分为不同的方法。
动机:
-
背景的变化会造成序列检测算法(TBD)性能下降,因此研究基于单帧的检测算法很有必要。
-
传统的弱小目标模型不一定适用于所有场景。
传统的弱小目标模型:目标成像很小,可认为是一个辐射点源,具有高斯分布特性,且各向同性的圆形,其灰度分布满足如下公式:
s ( x , y ) = γ e − 1 2 ( ( x σ x ) 2 + ( y σ y ) 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) s(x,y)={\gamma}e^{-\frac{1}{2}\Bigg((\frac{x}{\sigma_x})^2+(\frac{y}{\sigma_y})^2\Bigg)}...............................................(2) s(x,y)=γe−21((σxx)2+(σyy)2)...............................................(2)
式中, γ \gamma γ表示图像中目标灰度的峰值, σ x \sigma_x σx, σ y \sigma_y σy分别表示目标灰度在x,y方向的扩展参数,决定了目标的弥散程度, σ \sigma σ越小,目标灰度分布越集中; σ \sigma σ越大,目标灰度分布越弥散。在实际的图像序列中,目标的灰度分布并不总是满足二维高斯分布。可能具有"平顶"形状,且由于受成像距离、环境、目标类型的影响,目标的大小在2×2~10×10不等,目标的灰度峰值也很离散。
-
一些传统的目标检测算法对噪声敏感,且当目标尺寸范围较大时,检测效果不稳定。
弱小目标检测算法的性能通常取决于对目标、背景、目标和背景的假设,假设的合理性决定了算法在应用中的鲁棒性。
一些传统的算法,如Top-hat,通过预测背景 f B f_B fB,进而抑制背景 f T = f D − f B f_T=f_D-f_B fT=fD−fB 来检测目标。这类方法的缺点即:对噪声敏感,以及空域滤波模板大小往往取决于目标尺寸这一先验知识,所以受目标尺寸的影响较大。
提出的算法:
- 利用局部区域构造(local patch construction)的方法,将传统的红外图像模型推广至新的infrared patch-image,IPI 模型。
- 基于新模型,假设目标图T为稀疏矩阵,背景图B为低秩矩阵,进而将目标检测转化为分离低秩矩阵与稀疏矩阵的优化问题。
- 算法依据:背景主要是大面积缓慢变化的低频部分,如自然背景中的云层,其在空间上往往呈大面积的连续分布状态,在红外辐射的强度上也呈渐变过渡状态,使得其在灰度空间分布上具有较大相关性,这也是为什么我们在对背景预测时需要重点考虑背景辐射强度的起伏。本文提到,即使是图像中不相邻的背景之间也存在较强的相关性,因此可以将背景图B看作低秩矩阵。
- 将目标图T看作稀疏矩阵,仅利用的目标在整幅图中所占比例小这一假设(先验知识),未对目标的尺寸、目标的灰度值做假设,因此解决了问题(3),算法更具鲁棒性。
算法优点:
- 本文模型更符合真实性,对不同的目标尺寸和目标的SCR更具鲁棒性,应用场景更广泛。本文对目标和背景做出的假设(1)相较于整幅图像,目标的尺寸很小;(2)背景具有相关性。
- 即使在缺乏对背景和目标尺寸先验知识的前提下,利用当前low-rank matrix recovery技术依然可以求解,算法的实现得到了保证。
IPI模型:
-
patch-image的构建和重建
- 指定一滑动窗口,从左上到右下依次得到每个Patch,然后将每个patch向量化为列向量,构成新的矩阵,由此得到patch-image;
- patch-image的尺寸不仅取决于原图的大小,而且取决于滑动窗口的大小与其水平、垂直方向的滑动步长;(对一些特殊情况,(1)滑动窗口大小与原图大小相同(2)滑动窗口是与图像等高的列向量且滑动步长为1时,patch-image的大小与原图相同。)
由于局部块通常彼此重叠,因此重建图像中的像素位置将对应于来自不同块的多个值。 因此,我们应该定义一个一维滤波器函数来确定像素值 v:
v = f ( X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .