一阶系统开环传递函数表达式_我理解的现代控制系统 第6部分-频域指标与时域指标的关系...

本文深入探讨了一阶系统开环传递函数在频域中的表示,特别是通过伯德图分析系统的幅频和相频特性。通过实例解析,展示了如何从伯德图中获取谐振频率、阻尼比和固有频率,从而推断系统的时域性能,如峰值时间、超调量和调节时间。
摘要由CSDN通过智能技术生成

伯德图,系统的频域表示方法包括极坐标图,对数坐标图(伯德图)。通常使用的是伯德图,它包括幅频特性曲线和相频特性曲线。拉氏变换和频域变换的侧重点不同,拉氏变换通常来研究系统的零点和极点分布,进而研究系统的稳定性,频域主要研究系统在各种不同频率信号下的表现。伯德图的画法比较简单,首先,将传递函数中的拉氏s因子替换成频率因子jω,然后分别画出常数项,零极点,一阶零极点,二阶零极点的对数增益趋势图,采用对数的好处是化乘除为加减,然后按照频率进行加减就是系统的幅频特性曲线图,画好的图只是渐近线表示,能观察出系统的表现趋势,如果对特定的频率感兴趣,可以把频率代入传递函数求解出具体幅值来研究。相频特性类似,也是分别画出各点的相位趋势,然后进行加减。当然,用工具画最方便,比如使用matlab的bode函数。

频域指标,从bode图中可以看出什么信息呢,以二阶系统为例,假设二阶系统的闭环传递函数如下,其中ξ是阻尼比,ωn是系统的固有频率:

(6-1)

将s替换成jω后,得到频域表达式:

(6-2)

当ξ=0.2,ωn=10rad/s时,它的伯德图如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值