伯德图,系统的频域表示方法包括极坐标图,对数坐标图(伯德图)。通常使用的是伯德图,它包括幅频特性曲线和相频特性曲线。拉氏变换和频域变换的侧重点不同,拉氏变换通常来研究系统的零点和极点分布,进而研究系统的稳定性,频域主要研究系统在各种不同频率信号下的表现。伯德图的画法比较简单,首先,将传递函数中的拉氏s因子替换成频率因子jω,然后分别画出常数项,零极点,一阶零极点,二阶零极点的对数增益趋势图,采用对数的好处是化乘除为加减,然后按照频率进行加减就是系统的幅频特性曲线图,画好的图只是渐近线表示,能观察出系统的表现趋势,如果对特定的频率感兴趣,可以把频率代入传递函数求解出具体幅值来研究。相频特性类似,也是分别画出各点的相位趋势,然后进行加减。当然,用工具画最方便,比如使用matlab的bode函数。
频域指标,从bode图中可以看出什么信息呢,以二阶系统为例,假设二阶系统的闭环传递函数如下,其中ξ是阻尼比,ωn是系统的固有频率:
(6-1)
将s替换成jω后,得到频域表达式:
(6-2)
当ξ=0.2,ωn=10rad/s时,它的伯德图如下