有研究提出了一种简单的技术,在一个没有直接驱动关节的仿人NAO机器人上实时实现一个非线性有效控制器。关键的技巧是设计一个基于时间延迟估计的滑动模式控制器,而不需要事先了解机器人的动态,以减轻繁重的计算,因为机载处理器的计算能力较低,并处理不确定因素的影响。然后,将计算出的扭矩输入通过适当的变压器转换为伺服驱动NAO机器人的位置控制器。所提出的方法除了能确保高精度的跟踪外,还能确保在到达阶段的快速收敛。通过在实际的NAO机器人上的实验结果,验证了所提出的控制架构。本文以“Walking task space control using time delay estimation based sliding mode of position Controlled NAO biped robot”为题于2020年10月6日发布于《International Journal of Dynamics and Control 》杂志上。
研究背景与过程
目前,仿人机器人在设计、行走控制和实际操作等方面都取得了革命性的发展。类人机器人是一个令人兴奋和有趣的研究课题,因为它们的复杂性以及它们在几个危险的应用程序中的可用性,它们可以帮助或替代人类。现有的仿人机器人大多采用直流伺服电机,包括内部控制器作为关节执行器。大多数情况下,实现的控制器由著名的线性比例积分微分(PID)组成.在这种情况下,只能实现基于运动学的位置控制。但是,这种控件不足以执行兼容的行为。此外,对扰动的有效性也没有得到保证。基于这些原因,必须设计一种基于模型的有效动态控制。
其中一种解决方案是将仿人机器人行走时的柔顺性转化为基于模型的位置。对此方案进行了探讨,提出了一种基于辨识的执行器传递函数的转矩位置变压器。该方法已成功地应用于本田ASIMO仿人机器人的五自由度臂上.然而,该仿人机器人的下半身由基于零力矩点(ZMP)的稳定平衡控制。
作为所有现存的非线性系统,NAO机器人由于未建模的动力学、参数变化、地面缺陷和扰动而受到广泛的匹配不确定性的影响。因此,必须设计一种有效非线性方法,在保证跟踪良好的同时,能够处理不确定性的影响。在文献中最有效和最强大的控制器之一是滑模(SM)控制。后者由于其对一类非参数和参数不确定性的不敏感性、设计的简单性和有限时间的收敛性而受到研究者的关注。上述特性是使用不连续的开关输入,在有限的时间内驱动被命令系统的轨迹到设计的开关函数的结果。对几个不确定系统进行了数值模拟和实际工作,证明了SM的有效性。该方法已在双足类人机器人上进行了仿真验证。
为了解决上述问题,该研究提出了一种基于时间延迟估计(TDE)方法的SM控制方法,该方法将反馈到位置变压器的转矩。这一思想的发展包括以下三个步骤:
第一步,用TDE方法对整个非线性动力学进行重构。这种方法很简单,因为它使用了系统状态的延迟可用测量和计算的转矩输入。在该研究中,将对整个动力学进行估计,以减轻诸如绕过机载处理器的低计算能力等繁重的计算量。
在第二步,基于SM的指数趋近律(ERL)和线性项的设计考虑了估计的不确定性,迫使系统的位置达到期望的参考值。ERL是一种适用于控制器切换增益的著名方法,例如减少在滑动阶段发生的抖振。此外,增加的线性项确保了更快的收敛速度。
最后,第三步是利用NAO直流电机上现有线性调节器的图像(逆)将计算出的控制律转化为位置控制,因为后者没有直接驱动关节。
图为NAO仿人机器人的关节和底架
图为提出的动态控制体系结构
图为第三种场景的序列
图为第一种情况下左脚关节追踪的结果
图为第一种情况下左脚关节跟踪误差的结果
图为第一种情况下右脚关节跟踪误差的结果
再为第二三种情况做出研究。
研究结论
综上所述,该研究简要介绍了所提出的用于NAOV5.0类人机器人的位置控制器的实时实现的实验装置。这个小58厘米机器人是世界上最畅销的人形机器人。
该研究提出了一种基于有效非线性控制器的仿人NAO双足机器人动力学控制器。其基本思想是利用时滞估计方法逼近整个系统的动力学和扰动,进而推导出滑模控制器。该方案简单,由于动力学的复杂性,减少了大量的计算量。最后,利用现有PD调节器的图像,将计算出的转矩转化为伺服驱动NAO机器人的位置控制器。
参考文献:Yassine Kali, Maarouf Saad, Jean-François Boland, Jonathan Fortin & Vincent Girardeau Walking task space control using time delay estimation based sliding mode of position Controlled NAO biped robot International Journal of Dynamics and Control (2020)